Alcohol-associated liver disease represents a significant global health challenge, with gut microbial dysbiosis and bacterial translocation playing a critical role in its pathogenesis. Patients with alcohol-associated hepatitis had increased fecal abundance of mammalian viruses, including retroviruses. This study investigated the role of endogenous retroviruses (ERVs) in the development of alcohol-associated liver disease. Transcriptomic analysis of duodenal and liver biopsies revealed increased expression of several human ERVs, including HERV-K and HERV-H, in patients with alcohol-associated liver disease compared with individuals acting as controls. Chronic-binge ethanol feeding markedly induced ERV abundance in intestinal epithelial cells but not the livers of mice. Ethanol increased ERV expression and activated the Z-DNA binding protein 1 (Zbp1)–mixed lineage kinase domain-like pseudokinase (Mlkl) signaling pathways to induce necroptosis in intestinal epithelial cells. Antiretroviral treatment reduced ethanol-induced intestinal ERV expression, stabilized the gut barrier, and decreased liver disease in microbiota-humanized mice. Furthermore, mice with an intestine-specific deletion of Zbp1 were protected against bacterial translocation and ethanol-induced steatohepatitis. These findings indicate that ethanol exploits this pathway by inducing ERVs and promoting innate immune responses, which results in the death of intestinal epithelial cells, gut barrier dysfunction, and liver disease. Targeting the ERV/Zbp1 pathway may offer new therapies for patients with alcohol-associated liver disease.
Noemí Cabré, Marcos F. Fondevila, Wenchao Wei, Tomoo Yamazaki, Fernanda Raya Tonetti, Alvaro Eguileor, Ricard Garcia-Carbonell, Abraham S. Meijnikman, Yukiko Miyamoto, Susan Mayo, Yanhan Wang, Xinlian Zhang, Thorsten Trimbuch, Seija Lehnardt, Lars Eckmann, Derrick E. Fouts, Cristina Llorente, Hidekazu Tsukamoto, Peter Stärkel, Bernd Schnabl
Usage data is cumulative from May 2025 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,335 | 60 |
591 | 19 | |
Figure | 250 | 0 |
Supplemental data | 171 | 9 |
Citation downloads | 56 | 0 |
Totals | 3,403 | 88 |
Total Views | 3,491 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.