Fanconi anemia (FA) is a rare genetic disease characterized by loss-of-function variants in any of the 22 previously identified genes (FANCA-FANCW) that encode proteins participating in the repair of DNA interstrand crosslinks (ICLs). Patient phenotypes are variable, but may include developmental abnormalities, early onset pancytopenia, and predisposition to hematologic and solid tumors. Here, we describe two unrelated families with multiple pregnancy losses and offspring presenting with severe developmental and hematologic abnormalities leading to death in utero or in early life. Homozygous loss-of-function variants in FAAP100 were identified in affected children of both families. The FAAP100 protein associates with FANCB and FANCL, the E3 ubiquitin ligase responsible for the monoubiquitination of FANCD2 and FANCI, which is necessary for FA pathway function. Patient-derived cells exhibited phenotypes consistent with FA. Expression of the wild-type FAAP100 cDNA, but not the patient-derived variants, rescued the observed cellular phenotypes. This establishes FAAP100 deficiency as a cause of Fanconi anemia, with FAAP100 gaining an alias as FANCX. The extensive developmental malformations of individuals with FAAP100 loss-of-function variants are among the most severe across previously described FA phenotypes, indicating that the FA pathway is essential for human development.
Benjamin A. Harrison, Emma Mizrahi-Powell, John Pappas, Kristen Thomas, Subrahmanya Vasishta, Shripad Hebbar, Anju Shukla, Shalini S. Nayak, Tina K. Truong, Amy Woroch, Yara Kharbutli, Bruce D. Gelb, Cassie S. Mintz, Gilad D. Evrony, Agata Smogorzewska