Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Bacterial vaginosis associates with dysfunctional T cells and altered soluble immune factors in the cervicovaginal tract
Finn MacLean, … , Jennifer M. Lund, for the Kinga Study Team
Finn MacLean, … , Jennifer M. Lund, for the Kinga Study Team
Published March 25, 2025
Citation Information: J Clin Invest. 2025;135(10):e184609. https://doi.org/10.1172/JCI184609.
View: Text | PDF
Clinical Research and Public Health AIDS/HIV Immunology Infectious disease

Bacterial vaginosis associates with dysfunctional T cells and altered soluble immune factors in the cervicovaginal tract

  • Text
  • PDF
Abstract

BACKGROUND Bacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome that is prevalent among reproductive-age females worldwide. Adverse health outcomes associated with BV include an increased risk of sexually acquired HIV, yet the immunological mechanisms underlying this association are not well understood.METHODS To investigate BV-driven changes to cervicovaginal tract (CVT) and circulating T cell phenotypes, Kinga Study participants with or without BV provided vaginal tract (VT) and ectocervical (CX) tissue biopsies and PBMC samples.RESULTS High-parameter flow cytometry revealed an increased frequency of cervical CD4+ conventional T (Tconv) cells expressing CCR5 in BR+ versus BR– women. However, we found no difference in the number of CD3+CD4+CCR5+ cells in the CX or VT of BV+ versus BV– individuals, suggesting that BV-driven increased HIV susceptibility may not be solely attributed to increased CVT HIV target cell abundance. Flow cytometry also revealed that individuals with BV had an increased frequency of dysfunctional CX and VT CD39+ Tconv and CX tissue-resident CD69+CD103+ Tconv cells, reported to be implicated in HIV acquisition risk and replication. Many soluble immune factor differences in the CVT further support that BV elicits diverse and complex CVT immune alterations.CONCLUSION Our comprehensive analysis expands on potential immunological mechanisms that may underlie the adverse health outcomes associated with BV, including increased HIV susceptibility.TRIAL REGISTRATION ClinicalTrials.gov NCT03701802.FUNDING This work was supported by National Institutes of Health grants R01AI131914, R01AI141435, and R01AI129715.

Authors

Finn MacLean, Adino Tesfahun Tsegaye, Jessica B. Graham, Jessica L. Swarts, Sarah C. Vick, Nicole B. Potchen, Irene Cruz Talavera, Lakshmi Warrier, Julien Dubrulle, Lena K. Schroeder, Ayumi Saito, Corinne Mar, Katherine K. Thomas, Matthias Mack, Michelle C. Sabo, Bhavna H. Chohan, Kenneth Ngure, Nelly Rwamba Mugo, Jairam R. Lingappa, Jennifer M. Lund, for the Kinga Study Team

×

Usage data is cumulative from March 2025 through May 2025.

Usage JCI PMC
Text version 1,460 0
PDF 415 0
Figure 65 0
Table 2 0
Supplemental data 392 0
Citation downloads 35 0
Totals 2,369 0
Total Views 2,369

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts