Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment (TME) and dampen the immune response, negatively affecting patient survival. Therefore, targeting TAMs could address the limitations of current cancer treatments. However, drug development in this area remains limited. The Leukocyte-associated Immunoglobulin-like Receptor-1 (LAIR1), also called CD305, is prominently expressed on the surface of TAMs. We have uncovered a previously unrecognized immunosuppressive LAIR1 → Factor XIII A (FXIII-A) → Collagen IV pathway across various cancer types. Inhibition of LAIR1, either through knockout (Lair1–/–), antibody blockade (aLAIR1), or a chimeric antigen receptor (CAR) design (3-in-1 CAR by combining tumor targeting, T cell trafficking, and remodeling of the immunosuppressive TME in one CAR construct) provides enhanced antitumor response. LAIR1 inhibition enhances peripheral and intratumoral CD8 memory T-cell populations, induces a phenotypic shift of M2-like Macrophages towards M1, and normalizes tumor collagen IV and structural components in the TME, facilitating effective tumor-T cell interactions and tumor suppression. Enhanced antitumor responses were observed when Lair1–/– or aLAIR1 was used alone or combined with CAR T cells or when the 3-in-1 CAR T cells were used solely in chemotherapy-radiation-PD-1 blockade-resistant tumor models. These findings position LAIR1 inhibition as a promising strategy for cancer immunotherapies.
Haipeng Tao, Dongjiang Chen, Changlin Yang, Duy T. Nguyen, Georges Abboud, Ruixuan Liu, Tianyi Liu, Avirup Chakraborty, Alicia Y. Hou, Nicole A. Petit, Muhammad Abbas, Robert W. Davis, Janie Zhang, Christina Von Roemeling, Mohammed O. Gbadamosi, Linchun Jin, Tongjun Gu, Tuo Lin, Pengchen Wang, Alfonso Pepe, Diego Ivan Pedro, Hector R. Mendez-Gomez, Chao Xie, Aida Karachi, Frances Weidert, Dan Jin, Chenggang Wang, Kaytora Long-James, Elizabeth K. Molchan, Paul Castillo, John A. Ligon, Ashley P. Ghiaseddin, Elias J. Sayour, Maryam Rahman, Loic P. Deleyrolle, Betty Y.S. Kim, Duane A. Mitchell, W. Gregory Sawyer, Jianping Huang