Nociception involves complex signaling, yet intrinsic mechanisms bidirectionally regulating this process remain unexplored. Here, we show that the fibroblast growth factor 13 (FGF13)/Nav1.7 protein–protein interaction (PPI) complex bidirectionally modulates nociception, and that the FGF13/Nav1.7 ratio is upregulated in type 2 diabetic neuropathy (T2DN). PW164, an FGF13/Nav1.7 channel C-terminal tail domain (CTD) PPI interface inhibitor, which reduces complex assembly, selectively suppressed Na+ currents sensitized by capsaicin-induced activation of TRPV1 channels in human induced pluripotent stem cell–derived (hIPSC-derived) sensory neurons and inhibited mechanical and thermal hyperalgesia in mice. FGF13 silencing mimics PW164 activity in culture and in vivo. Conversely, ZL192, an FGF13 ligand that stabilizes FGF13/Nav1.7 CTD assembly, sensitized Na+ currents in hIPSC-derived sensory neurons and exerted pronociceptive behavioral responses in mice. ZL192’s effects were abrogated by FGF13 silencing in culture and in vivo and recapitulated by FGF13 overexpression. In a model of T2DN, PW164 injection reduced mechanical hyperalgesia locally and contralaterally without systemic side effects. In donor-derived dorsal root ganglia neurons, FGF13 and Nav1.7 proteins colocalized, and the FGF13/Nav1.7 protein ratio was upregulated in patients with T2DN. Lastly, we found that SCN9A variant V1831F, associated with painless diabetic neuropathy, abolished PW164-directed modulation of the FGF13/Nav1.7 PPI interface. Thus, FGF13 is a rheostat of nociception and promising therapeutic target for diabetic neuropathy pain.
Aditya K. Singh, Matteo Bernabucci, Nolan M. Dvorak, Zahra Haghighijoo, Jessica Di Re, Nana A. Goode, Feni K. Kadakia, Laura A. Maile, Olumarotimi O. Folorunso, Paul A. Wadsworth, Cynthia M. Tapia, Pingyuan Wang, Jigong Wang, Haiying Chen, Yu Xue, Jully Singh, Kali Hankerd, Isaac J. Gamez, Makenna Kager, Vincent Truong, Patrick Walsh, Stephanie I. Shiers, Nishka Kuttanna, Hanyue Liao, Margherita Marchi, Erika Salvi, Ilaria D’Amato, Daniela D’Amico, Parsa Arman, Catharina G. Faber, Rayaz A. Malik, Marina de Tommaso, Dan Ziegler, Krishna Rajarathnam, Thomas A. Green, Peter M. Grace, Matthew R. Sapio, Michael J. Iadarola, Gregory D. Cuny, Diana S. Chow, Giuseppe Lauria Pinter, Steve Davidson, Dustin P. Green, Jun-Ho La, Jin Mo Chung, Jia Zhou, Theodore J. Price, Elizabeth Salisbury, Subo Yuan, Fernanda Laezza
Usage data is cumulative from July 2025 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,013 | 157 |
389 | 47 | |
Figure | 420 | 0 |
Supplemental data | 105 | 7 |
Citation downloads | 28 | 0 |
Totals | 2,955 | 211 |
Total Views | 3,166 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.