Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Deubiquitination of type 2 iodothyronine deiodinase by von Hippel–Lindau protein–interacting deubiquitinating enzymes regulates thyroid hormone activation
Cyntia Curcio-Morelli, … , Guan Wu, Antonio C. Bianco
Cyntia Curcio-Morelli, … , Guan Wu, Antonio C. Bianco
Published July 15, 2003
Citation Information: J Clin Invest. 2003;112(2):189-196. https://doi.org/10.1172/JCI18348.
View: Text | PDF
Article Endocrinology

Deubiquitination of type 2 iodothyronine deiodinase by von Hippel–Lindau protein–interacting deubiquitinating enzymes regulates thyroid hormone activation

  • Text
  • PDF
Abstract

The type 2 iodothyronine deiodinase (D2) is an integral membrane ER-resident selenoenzyme that activates the pro-hormone thyroxine (T4) and supplies most of the 3,5,3′-triiodothyronine (T3) that is essential for brain development. D2 is inactivated by selective conjugation to ubiquitin, a process accelerated by T4 catalysis and essential for the maintenance of T3 homeostasis. A yeast two-hybrid screen of a human-brain library with D2 as bait identified von Hippel–Lindau protein–interacting deubiquitinating enzyme-1 (VDU1). D2 interaction with VDU1 and VDU2, a closely related deubiquitinase, was confirmed in mammalian cells. Both VDU proteins colocalize with D2 in the ER, and their coexpression prolongs D2 half-life and activity by D2 deubiquitination. VDU1, but not VDU2, is markedly increased in brown adipocytes by norepinephrine or cold exposure, further amplifying the increase in D2 activity that results from catecholamine-stimulated de novo synthesis. Thus, deubiquitination regulates the supply of active thyroid hormone to brown adipocytes and other D2-expressing cells.

Authors

Cyntia Curcio-Morelli, Ann Marie Zavacki, Marcelo Christofollete, Balazs Gereben, Beatriz C.G. de Freitas, John W. Harney, Zaibo Li, Guan Wu, Antonio C. Bianco

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Stabilization of 75Se-D2 is due to decreased Ub-D2. (a) HEK-293 cells tr...
Stabilization of 75Se-D2 is due to decreased Ub-D2. (a) HEK-293 cells transiently coexpressing FLAG-wtD2 and/or VDU1 or VDU2 were labeled with Na2[75Se]O3 for 16 hours and pulse-chased with 100 nM Na2SeO3; cells were harvested at 0 or 2 hours. (b) Same as in a except that wtD1 was coexpressed with VDU1 or VDU2, with a chase time of 6 hours. Cell lysates in a and b were processed for immunoprecipitation with anti-FLAG antibody, and pellets were resolved by SDS-PAGE. The densitometric analysis is presented for each gel. (c) HEK-293 cells transiently expressing FLAG-CysD2, HA-Ub, and VDU1 or VDU2 were lysed and processed for immunoprecipitation with anti-FLAG antibody. The pellets were resolved by SDS-PAGE and probed with anti-HA antibody by Western analysis. HEK-293 cells transiently coexpressing FLAG-wtD2 and/or VDU1 or VDU2 were labeled with 75Se for 16 hours, and the cell lysates were processed as described in a. The corresponding immunoprecipitated nonubiquitinated 75Se-D2 is shown below each lane of 75Se-Ub-D2. Each experiment in a–c was performed twice.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts