Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Quantifying variant contributions in cystic kidney disease using national-scale whole-genome sequencing
Omid Sadeghi-Alavijeh, Melanie M.Y. Chan, Gabriel T. Doctor, Catalin D. Voinescu, Alexander Stuckey, Athanasios Kousathanas, Alexander T. Ho, Horia C. Stanescu, Detlef Bockenhauer, Richard N. Sandford, Adam P. Levine, Daniel P. Gale
Omid Sadeghi-Alavijeh, Melanie M.Y. Chan, Gabriel T. Doctor, Catalin D. Voinescu, Alexander Stuckey, Athanasios Kousathanas, Alexander T. Ho, Horia C. Stanescu, Detlef Bockenhauer, Richard N. Sandford, Adam P. Levine, Daniel P. Gale
View: Text | PDF
Clinical Research and Public Health Genetics Nephrology

Quantifying variant contributions in cystic kidney disease using national-scale whole-genome sequencing

  • Text
  • PDF
Abstract

BACKGROUND Cystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to ascertainment and other biases.METHODS Using whole-genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to generate quantitative estimates of disease risk for each genetic contributor to CyKD, across genes, variant types and allelic frequencies.RESULTS In 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD genes, with statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. Quantification of disease risk for each gene (with replication in the separate UK Biobank study) revealed substantially lower risk associated with genes more recently associated with autosomal dominant polycystic kidney disease, with odds ratios for some below what might usually be regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did not reveal significant associations, but suggested this category of variation contributes 3%–9% to the heritability of CyKD across European ancestries.CONCLUSION By providing unbiased quantification of risk effects per gene, this research suggests that not all rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in families. This information may inform genetic testing and counseling in the clinic.

Authors

Omid Sadeghi-Alavijeh, Melanie M.Y. Chan, Gabriel T. Doctor, Catalin D. Voinescu, Alexander Stuckey, Athanasios Kousathanas, Alexander T. Ho, Horia C. Stanescu, Detlef Bockenhauer, Richard N. Sandford, Adam P. Levine, Daniel P. Gale

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

ICMJE disclosure forms - Download (1.58 MB)

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts