Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Antibiotic use during influenza infection augments lung eosinophils that impair immunity against secondary bacterial pneumonia
Marilia Sanches Santos Rizzo Zuttion, … , David M. Underhill, Peter Chen
Marilia Sanches Santos Rizzo Zuttion, … , David M. Underhill, Peter Chen
Published September 10, 2024
Citation Information: J Clin Invest. 2024;134(21):e180986. https://doi.org/10.1172/JCI180986.
View: Text | PDF
Research Article Infectious disease Pulmonology

Antibiotic use during influenza infection augments lung eosinophils that impair immunity against secondary bacterial pneumonia

  • Text
  • PDF
Abstract

A leading cause of mortality after influenza infection is the development of a secondary bacterial pneumonia. In the absence of a bacterial superinfection, prescribing antibacterial therapies is not indicated but has become a common clinical practice for those presenting with a respiratory viral illness. In a murine model, we found that antibiotic use during influenza infection impaired the lung innate immunologic defenses toward a secondary challenge with methicillin-resistant Staphylococcus aureus (MRSA). Antibiotics augment lung eosinophils, which have inhibitory effects on macrophage function through the release of major basic protein. Moreover, we demonstrated that antibiotic treatment during influenza infection caused a fungal dysbiosis that drove lung eosinophilia and impaired MRSA clearance. Finally, we evaluated 3 cohorts of hospitalized patients and found that eosinophils positively correlated with antibiotic use, systemic inflammation, and worsened outcomes. Altogether, our work demonstrates a detrimental effect of antibiotic treatment during influenza infection that has harmful immunologic consequences via recruitment of eosinophils to the lungs, thereby increasing the risk of developing a secondary bacterial infection.

Authors

Marilia Sanches Santos Rizzo Zuttion, Tanyalak Parimon, Stephanie A. Bora, Changfu Yao, Katherine Lagree, Catherine A. Gao, Richard G. Wunderink, Georgios D. Kitsios, Alison Morris, Yingze Zhang, Bryan J. McVerry, Matthew E. Modes, Alberto M. Marchevsky, Barry R. Stripp, Christopher M. Soto, Ying Wang, Kimberly Merene, Silvia Cho, Blandine L. Victor, Ivan Vujkovic-Cvijin, Suman Gupta, Suzanne L. Cassel, Fayyaz S. Sutterwala, Suzanne Devkota, David M. Underhill, Peter Chen

×

Figure 5

Antibiotics cause fungal dysbiosis during the influenza-MRSA 2-hit challenge.

Options: View larger image (or click on image) Download as PowerPoint
Antibiotics cause fungal dysbiosis during the influenza-MRSA 2-hit chall...
(A) Stool was collected at days 0 and 7 from VNAM (n = 5 and 4, respectively) and control (n = 4) groups for ITS PCR. *P < 0.001 by 2-tailed Student’s t test. (B–I) ITS sequencing of the stool collected at the designated time points from control and VNAM-treated mice infected with influenza (day 0) followed by MRSA (day 10). (B) Chao index showed no difference in α-diversity (n = 3–4). (C) Principal coordinates analysis demonstrated changes in β-diversity at day 12 (n = 3–4). (D and E) Relative abundance for individual samples at day 10 of the 2-hit model in control (n = 4) and VNAM (n = 5) groups at the family (D) and genus (E) levels. The top 10 families or genera are shown, and all others are cumulatively reported in the “Other” group. (F–I) The relative abundance at the genus level was significantly higher in the VNAM (n = 5) compared with the control (n = 4) group for Saccharomyces (F), Malassezia (G), Filobasidium (H), and Bullera (I). *P < 0.05 by 2-tailed Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts