There is unmet need for additional biomarkers to better select patients with non–small cell lung cancer (NSCLC) that are likely to benefit from immunotherapy in order to improve patient outcomes, reduce patient toxicity, and relieve the growing burden of healthcare costs. In this issue of the JCI, Hayashi and colleagues evaluated soluble forms of the immune checkpoint molecules PD-L1, PD-1, and CTLA-4 in the plasma of patients with advanced NSCLC who had been treated with anti-PD-1/L1 therapy. The findings suggest that these soluble immune-checkpoint factors may provide a complementary biomarker to PD-L1 IHC, although application into the clinic may not be straightforward.
Aaron C. Tan, Sarah L. Cook, Mustafa Khasraw
Usage data is cumulative from April 2024 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 2,279 | 223 |
704 | 78 | |
Figure | 366 | 1 |
Citation downloads | 102 | 0 |
Totals | 3,451 | 302 |
Total Views | 3,753 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.