Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Regulatory functions of CD8+CD28– T cells in an autoimmune disease model
Nader Najafian, … , Mohamed H. Sayegh, Samia J. Khoury
Nader Najafian, … , Mohamed H. Sayegh, Samia J. Khoury
Published October 1, 2003
Citation Information: J Clin Invest. 2003;112(7):1037-1048. https://doi.org/10.1172/JCI17935.
View: Text | PDF
Article Autoimmunity

Regulatory functions of CD8+CD28– T cells in an autoimmune disease model

  • Text
  • PDF
Abstract

CD8+ T cell depletion renders CD28-deficient mice susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, CD8–/–CD28–/– double-knockout mice are susceptible to EAE. These findings suggest a role for CD8+ T cells in the resistance of CD28-deficient mice to disease. Adoptive transfer of CD8+CD28– T cells into CD8–/– mice results in significant suppression of disease, while CD8+CD28+ T cells demonstrate no similar effect on the clinical course of EAE in the same recipients. In vitro, CD8+CD28– but not CD8+CD28+ T cells suppress IFN-γ production of myelin oligodendrocyte glycoprotein–specific CD4+ T cells. This suppression requires cell-to-cell contact and is dependent on the presence of APCs. APCs cocultured with CD8+CD28– T cells become less efficient in inducing a T cell–dependent immune response. Such interaction prevents upregulation of costimulatory molecules by APCs, hence decreasing the delivery of these signals to CD4+ T cells. These are the first data establishing that regulatory CD8+CD28– T cells occur in normal mice and play a critical role in disease resistance in CD28–/– animals.

Authors

Nader Najafian, Tanuja Chitnis, Alan D. Salama, Bing Zhu, Christina Benou, Xueli Yuan, Michael R. Clarkson, Mohamed H. Sayegh, Samia J. Khoury

×

Figure 7

Options: View larger image (or click on image) Download as PowerPoint
CD8+CD28– T cell–induced suppression in vitro requires cell-cell contact...
CD8+CD28– T cell–induced suppression in vitro requires cell-cell contact and is APC dependent. MOG p35-55–specific IFN-γ–producing cells were measured by ELISPOT in cultures of CD8–/– on day 14 after immunization. (a) Addition of 100% purified CD8+CD28– T cells in a 2:1 ratio leads to complete suppression of IFN-γ spots only if in direct contact with responder cells (white bar), but not if separated by a Transwell membrane (black bar). Titration of the same number of CD28+/+ splenocytes as CD8+CD28– T cells only led to an increase of IFN-γ spots (dark gray bar). (b) CD8+CD28–, but not CD8+CD28+ cells originating from WT mice demonstrate similar suppressive activity in vitro because CD8+CD28– cells generated from CD28–/– mice as demonstrated. (c) Purified CD8+CD28– T cells are not able to suppress IFN-γ production by 100% purified CD4 T cells stimulated by PMA (10 ng/ml) and ionomycin (400 ng/ml). The coculture of CD8+CD28– and CD4+ cells results in accumulation of spots produced by each individual group of cells (black bar) after stimulation with PMA plus ionomycin. Con A is unable to stimulate purified CD4 cells in the absence of accessory cells. (d) Purified CD8+CD28– T cells added to cultures in 2:1 contact induce complete suppression of IFN-γ production by naive CD8–/– splenocytes stimulated by Con A at 5 μg/ml.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts