Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
LOXL2-induced PEAR1 Ser891 phosphorylation suppresses CD44 degradation and promotes triple-negative breast cancer metastasis
Yingzhi Shen, … , Junling Liu, Xuemei Fan
Yingzhi Shen, … , Junling Liu, Xuemei Fan
Published August 15, 2024
Citation Information: J Clin Invest. 2024;134(16):e177357. https://doi.org/10.1172/JCI177357.
View: Text | PDF
Research Article Cell biology Oncology

LOXL2-induced PEAR1 Ser891 phosphorylation suppresses CD44 degradation and promotes triple-negative breast cancer metastasis

  • Text
  • PDF
Abstract

CD44 is associated with a high risk of metastasis, recurrence, and drug resistance in various cancers. Here we report that platelet endothelial aggregation receptor 1 (PEAR1) is a CD44 chaperone protein that protected CD44 from endocytosis-mediated degradation and enhances cleavage of the CD44 intracellular domain (CD44-ICD). Furthermore, we found that lysyl oxidase–like protein 2 (LOXL2), an endogenous ligand of PEAR1, bound to the PEAR1-EMI domain and facilitated the interaction between PEAR1 and CD44 by inducing PEAR1 Ser891 phosphorylation in a manner that was independent of its enzyme activity. Levels of PEAR1 protein and PEAR1 phosphorylation at Ser891 were increased in patients with triple-negative breast cancer (TNBC), were positively correlated with expression of LOXL2 and CD44, and were negatively correlated with overall survival. The level of PEAR1 Ser891 phosphorylation was identified as the best independent prognostic factor in TNBC patients. The prognostic efficacy of the combination of PEAR1 phosphorylation at Ser891 and CD44 expression was superior to that of PEAR1 phosphorylation at Ser891 alone. Blocking the interaction between LOXL2 and PEAR1 with monoclonal antibodies significantly inhibited TNBC metastasis, representing a promising therapeutic strategy for TNBC.

Authors

Yingzhi Shen, Jie Yan, Lin Li, Huiyan Sun, Lin Zhang, Guoming Li, Xinxia Wang, Ruoyan Liu, Xuefeng Wu, Baosan Han, Xueqing Sun, Junling Liu, Xuemei Fan

×

Figure 7

The LOXL2/PEAR1/CD44 axis is upregulated in TNBC and is associated with poor overall survival.

Options: View larger image (or click on image) Download as PowerPoint
The LOXL2/PEAR1/CD44 axis is upregulated in TNBC and is associated with ...
(A) Quantification of PEAR1, phospho-PEAR1 Ser891, LOXL2, and CD44 staining scores by IHC in TNBC and corresponding adjacent samples (n = 80 for TAT and tumor samples; mean ± SEM). (B) Overall survival of patients with TNBC based on PEAR1, phospho-PEAR1 (Ser891), LOXL2, and CD44 expression levels (n values as indicated; log-rank test). (C) Heatmap of the correlation between the expression levels of PEAR1, phospho-PEAR1 Ser891, LOXL2, and CD44 in TNBC samples (n = 80; Pearson’s correlation analysis). (D) The prognostic effect of the risk score of phospho-PEAR1 Ser891 and its combination with CD44 for patients with TNBC (time-dependent ROC curve analysis). (E) Schematic diagram of the mechanisms by which the LOXL2/PEAR1/CD44 pathway regulates TNBC metastasis. Unpaired 2-tailed t tests were used for A; log-rank test was used for B; Pearson’s correlation analysis was used for C; time-dependent ROC curve analysis was used for D. ****P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts