Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Posttranslationally modified self-peptides promote hypertension in mouse models
Nathaniel Bloodworth, … , Jens Meiler, David G. Harrison
Nathaniel Bloodworth, … , Jens Meiler, David G. Harrison
Published August 15, 2024
Citation Information: J Clin Invest. 2024;134(16):e174374. https://doi.org/10.1172/JCI174374.
View: Text | PDF
Research Article Cardiology Immunology

Posttranslationally modified self-peptides promote hypertension in mouse models

  • Text
  • PDF
Abstract

Posttranslational modifications can enhance immunogenicity of self-proteins. In several conditions, including hypertension, systemic lupus erythematosus, and heart failure, isolevuglandins (IsoLGs) are formed by lipid peroxidation and covalently bond with protein lysine residues. Here, we show that the murine class I major histocompatibility complex (MHC-I) variant H-2Db uniquely presents isoLG-modified peptides and developed a computational pipeline that identifies structural features for MHC-I accommodation of such peptides. We identified isoLG-adducted peptides from renal proteins, including sodium glucose transporter 2, cadherin 16, Kelch domain–containing protein 7A, and solute carrier family 23, that are recognized by CD8+ T cells in tissues of hypertensive mice, induce T cell proliferation in vitro, and prime hypertension after adoptive transfer. Finally, we find patterns of isoLG-adducted antigen restriction in class I human leukocyte antigens that are similar to those in murine analogs. Thus, we have used a combined computational and experimental approach to define likely antigenic peptides in hypertension.

Authors

Nathaniel Bloodworth, Wei Chen, Kuniko Hunter, David Patrick, Amy Palubinsky, Elizabeth Phillips, Daniel Roeth, Markus Kalkum, Simon Mallal, Sean Davies, Mingfang Ao, Rocco Moretti, Jens Meiler, David G. Harrison

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (2.10 MB)

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts