Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas
Claudia Curcio, … , Piero Musiani, Guido Forni
Claudia Curcio, … , Piero Musiani, Guido Forni
Published April 15, 2003
Citation Information: J Clin Invest. 2003;111(8):1161-1170. https://doi.org/10.1172/JCI17426.
View: Text | PDF
Article Vaccines

Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas

  • Text
  • PDF
Abstract

Since the mechanisms by which specific immunity destroys Her-2/neu carcinoma cells are highly undetermined, these were assessed in BALB/c mice vaccinated with plasmids encoding extracellular and transmembrane domains of the protein product (p185neu) of the rat Her-2/neu oncogene shot into the skin by gene gun. Vaccinated mice rejected a lethal challenge of TUBO carcinoma cells expressing p185neu. Depletion of CD4 T cells during immunization abolished the protection, while depletion of CD8 cells during the effector phase halved it, and depletion of polymorphonuclear granulocytes abolished all protection. By contrast, Ig μ-chain gene KO mice, as well as Fcγ receptor I/III, β-2 microglobulin, CD1, monocyte chemoattractant protein 1 (MCP1), IFN-γ, and perforin gene KO mice were protected. Only mice with both IFN-γ and perforin gene KOs were not protected. Although immunization also cured all BALB/c mice bearing established TUBO carcinomas, it did not cure any of the perforin KO or perforin and IFN-γ KO mice. Few mice were cured that had knockouts of the gene for Ig μ-chain, Fcγ receptor I/III, IFN-γ, or β-2 microglobulin. Moreover, vaccination cured half of the CD1 and the majority of the MCP1 KO mice. The eradication of established p185neu carcinomas involves distinct mechanisms, each endowed with a different curative potential.

Authors

Claudia Curcio, Emma Di Carlo, Raphael Clynes, Mark J. Smyth, Katia Boggio, Elena Quaglino, Michela Spadaro, Mario P. Colombo, Augusto Amici, Pier-Luigi Lollini, Piero Musiani, Guido Forni

×

Full Text PDF | Download (2.22 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts