Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NR2E3 loss disrupts photoreceptor cell maturation and fate in human organoid models of retinal development
Nathaniel K. Mullin, … , Edwin M. Stone, Budd A. Tucker
Nathaniel K. Mullin, … , Edwin M. Stone, Budd A. Tucker
Published April 23, 2024
Citation Information: J Clin Invest. 2024;134(11):e173892. https://doi.org/10.1172/JCI173892.
View: Text | PDF
Research Article Development Ophthalmology

NR2E3 loss disrupts photoreceptor cell maturation and fate in human organoid models of retinal development

  • Text
  • PDF
Abstract

While dysfunction and death of light-detecting photoreceptor cells underlie most inherited retinal dystrophies, knowledge of the species-specific details of human rod and cone photoreceptor cell development remains limited. Here, we generated retinal organoids carrying retinal disease–causing variants in NR2E3, as well as isogenic and unrelated controls. Organoids were sampled using single-cell RNA sequencing (scRNA-Seq) across the developmental window encompassing photoreceptor specification, emergence, and maturation. Using scRNA-Seq data, we reconstruct the rod photoreceptor developmental lineage and identify a branch point unique to the disease state. We show that the rod-specific transcription factor NR2E3 is required for the proper expression of genes involved in phototransduction, including rhodopsin, which is absent in divergent rods. NR2E3-null rods additionally misexpress several cone-specific phototransduction genes. Using joint multimodal single-cell sequencing, we further identify putative regulatory sites where rod-specific factors act to steer photoreceptor cell development. Finally, we show that rod-committed photoreceptor cells form and persist throughout life in a patient with NR2E3-associated disease. Importantly, these findings are strikingly different from those observed in Nr2e3 rodent models. Together, these data provide a road map of human photoreceptor development and leverage patient induced pluripotent stem cells to define the specific roles of rod transcription factors in photoreceptor cell emergence and maturation in health and disease.

Authors

Nathaniel K. Mullin, Laura R. Bohrer, Andrew P. Voigt, Lola P. Lozano, Allison T. Wright, Vera L. Bonilha, Robert F. Mullins, Edwin M. Stone, Budd A. Tucker

×

Figure 4

Divergent rods express a combination of rod- and cone-specific genes involved in phototransduction.

Options: View larger image (or click on image) Download as PowerPoint
Divergent rods express a combination of rod- and cone-specific genes inv...
(A) Differentially expressed genes between the divergent rod and rod (x axis) or cone (y axis) lineages. Compared with normal rods, divergent rods upregulate several cone-specific transcripts, as well as genes involved in synaptogenesis. Compared with normal cones, divergent rods upregulate canonical rod transcripts. Genes involved in phototransduction are highlighted in red. (B) Diagram of rod-specific (left) and cone-specific (right) components of the phototransduction pathway. Genes expressed in divergent rods are colored, and those not expressed in divergent rods are shown in gray. (C) Pathway enrichment analysis for differentially expressed genes between divergent rod and rod clusters (the x axis of A). (D) The rod-specific transducin component (GNAT1) is expressed in rod and divergent rod lineages but not in normal cones. (E) The cone-specific phosphodiesterase PDE6H is expressed in the normal cone lineage and in divergent rods across the same developmental time. (F) The rod-specific opsin RHO is expressed late in normal rod development but not divergent rods. For D–F, tNRL and tNR2E3 indicate pseudotime points of NRL and NR2E3 expression induction, respectively (as in Figure 2, O and P).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts