Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NR2E3 loss disrupts photoreceptor cell maturation and fate in human organoid models of retinal development
Nathaniel K. Mullin, … , Edwin M. Stone, Budd A. Tucker
Nathaniel K. Mullin, … , Edwin M. Stone, Budd A. Tucker
Published April 23, 2024
Citation Information: J Clin Invest. 2024;134(11):e173892. https://doi.org/10.1172/JCI173892.
View: Text | PDF
Research Article Development Ophthalmology

NR2E3 loss disrupts photoreceptor cell maturation and fate in human organoid models of retinal development

  • Text
  • PDF
Abstract

While dysfunction and death of light-detecting photoreceptor cells underlie most inherited retinal dystrophies, knowledge of the species-specific details of human rod and cone photoreceptor cell development remains limited. Here, we generated retinal organoids carrying retinal disease–causing variants in NR2E3, as well as isogenic and unrelated controls. Organoids were sampled using single-cell RNA sequencing (scRNA-Seq) across the developmental window encompassing photoreceptor specification, emergence, and maturation. Using scRNA-Seq data, we reconstruct the rod photoreceptor developmental lineage and identify a branch point unique to the disease state. We show that the rod-specific transcription factor NR2E3 is required for the proper expression of genes involved in phototransduction, including rhodopsin, which is absent in divergent rods. NR2E3-null rods additionally misexpress several cone-specific phototransduction genes. Using joint multimodal single-cell sequencing, we further identify putative regulatory sites where rod-specific factors act to steer photoreceptor cell development. Finally, we show that rod-committed photoreceptor cells form and persist throughout life in a patient with NR2E3-associated disease. Importantly, these findings are strikingly different from those observed in Nr2e3 rodent models. Together, these data provide a road map of human photoreceptor development and leverage patient induced pluripotent stem cells to define the specific roles of rod transcription factors in photoreceptor cell emergence and maturation in health and disease.

Authors

Nathaniel K. Mullin, Laura R. Bohrer, Andrew P. Voigt, Lola P. Lozano, Allison T. Wright, Vera L. Bonilha, Robert F. Mullins, Edwin M. Stone, Budd A. Tucker

×

Figure 3

NR2E3 loss disrupts rod chromatin accessibility.

Options: View larger image (or click on image) Download as PowerPoint
NR2E3 loss disrupts rod chromatin accessibility.
(A) Experimental schema...
(A) Experimental schematic showing collection of nuclei from D160 and D260 retinal organoids for joint multimodal single-nucleus sequencing. (B) Annotated WNN-UMAP projections of cells assayed by joint multimodal single-nucleus sequencing. Both lines contribute to all cell type clusters. (C and D) Two-dimensional projection of cells based on WNN analysis of gene expression and ATAC-seq profiles. Cells split by line (NR2E3-null and isogenic control). Cells are shaded based on divergent rod gene module score, with red indicating enrichment for divergent rod module genes. (E) Differential ATAC peak accessibility between NR2E3-null and isogenic control rods. Peaks that are more accessible in the control line (i.e., closed in the NR2E3-null rods) are shown in red, while peaks that are more accessible in the NR2E3-null line are shown in blue. More peaks are accessible in NR2E3-null versus control, indicating a globally repressive role for NR2E3 in maturing rod photoreceptors. (F) Transcription factor binding motif enrichment in peaks that are inaccessible in the NR2E3-null rods versus control. Enrichment of the NRL motif indicates reliance of NRL on NR2E3 presence for binding. (G and H) Motif symbols for the NR2E3- and NRL-binding motifs used for analysis in F.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts