Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pathophysiology of cerebral small vessel disease: a journey through recent discoveries
Nicolas Dupré, … , Antoine Drieu, Anne Joutel
Nicolas Dupré, … , Antoine Drieu, Anne Joutel
Published May 15, 2024
Citation Information: J Clin Invest. 2024;134(10):e172841. https://doi.org/10.1172/JCI172841.
View: Text | PDF
Review Series

Pathophysiology of cerebral small vessel disease: a journey through recent discoveries

  • Text
  • PDF
Abstract

Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.

Authors

Nicolas Dupré, Antoine Drieu, Anne Joutel

×

Figure 2

Integrated representation of the anatomy, cellular composition, and physiology of brain vessels.

Options: View larger image (or click on image) Download as PowerPoint
Integrated representation of the anatomy, cellular composition, and phys...
(A) Schematic of the arteriovenous axis with the four main vascular compartments, including the artery/arteriole, the arteriole-capillary transition (ACT) zone, the capillary bed and the venule/vein, and their associated cells: arterial endothelial cells (aECs), arterial SMCs (aSMCs), transitional cells (trans cells, orange), capillary endothelial cells (capECs), venous endothelial cells (vECs), and venous SMCs (vSMCs). Penetrating arteries and arterioles are separated from the brain parenchyma by a fluid-filled space (light green) that disappears as arterioles morph into capillaries and then reappears around veins. The perivascular space (inset) contains resident cells (PVMs and perivascular fibroblasts, PVFBs) and is delimited on the parenchymal side by the glia limitans formed by astrocytic endfeet. (B) Simplified depiction of the main brain vessel functions with respect to each vascular compartment. From top to bottom: (i) CBF autoregulation increases or decreases vessel diameter in response to BP decreases and increases, respectively. aSMCs are the primary sensors of BP changes and the primary effector cells driving changes in vessel diameter. (ii) Neurovascular coupling starts with the increase in local neural activity that leads to capEC hyperpolarization. Hyperpolarizing signal is propagated to upstream arterioles/arteries and transmitted to aSMCs, resulting in retrograde vasodilation. (iii) The BBB is formed by ECs, mural cells with their basement membrane, and astrocytic endfeet. Tight junctions between ECs prevent free paracellular transport of molecules; ECs express specific influx transporters and efflux pumps, which drive the active transport of specific solutes and metabolites into or out of the brain, respectively, and are enriched for the lipid transporter MFSD2A, which inhibits the rate of transcytosis (113, 166). (iv) The glymphatic system involves (a) CSF influx along the periarterial spaces, driven mainly by arterial pulsatility; (b) CSF entry into the brain supported by aquaporin 4 (AQP4) channel expression on the astrocytic endfeet, subsequent mix with the ISF, and flow through the extracellular spaces; and (c) the efflux of extracellular fluid and wastes along perivenous spaces.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts