Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Active DHEA uptake in the prostate gland correlates with aggressive prostate cancer
Xuebin Zhang, Zengming Wang, Shengsong Huang, Dongyin He, Weiwei Yan, Qian Zhuang, Zixian Wang, Chenyang Wang, Qilong Tan, Ziqun Liu, Tao Yang, Ying Liu, Ruobing Ren, Jing Li, William Butler, Huiru Tang, Gong-Hong Wei, Xin Li, Denglong Wu, Zhenfei Li
Xuebin Zhang, Zengming Wang, Shengsong Huang, Dongyin He, Weiwei Yan, Qian Zhuang, Zixian Wang, Chenyang Wang, Qilong Tan, Ziqun Liu, Tao Yang, Ying Liu, Ruobing Ren, Jing Li, William Butler, Huiru Tang, Gong-Hong Wei, Xin Li, Denglong Wu, Zhenfei Li
View: Text | PDF
Research Article Oncology

Active DHEA uptake in the prostate gland correlates with aggressive prostate cancer

  • Text
  • PDF
Abstract

Strategies for patient stratification and early intervention are required to improve clinical benefits for patients with prostate cancer. Here, we found that active DHEA utilization in the prostate gland correlated with tumor aggressiveness at early disease stages, and 3βHSD1 inhibitors were promising for early intervention. [3H]-labeled DHEA consumption was traced in fresh prostatic biopsies ex vivo. Active DHEA utilization was more frequently found in patients with metastatic disease or therapy-resistant disease. Genetic and transcriptomic features associated with the potency of prostatic DHEA utilization were analyzed to generate clinically accessible approaches for patient stratification. UBE3D, by regulating 3βHSD1 homeostasis, was discovered to be a regulator of patient metabolic heterogeneity. Equilin suppressed DHEA utilization and inhibited tumor growth as a potent 3βHSD1 antagonist, providing a promising strategy for the early treatment of aggressive prostate cancer. Overall, our findings indicate that patients with active prostatic DHEA utilization might benefit from 3βHSD1 inhibitors as early intervention.

Authors

Xuebin Zhang, Zengming Wang, Shengsong Huang, Dongyin He, Weiwei Yan, Qian Zhuang, Zixian Wang, Chenyang Wang, Qilong Tan, Ziqun Liu, Tao Yang, Ying Liu, Ruobing Ren, Jing Li, William Butler, Huiru Tang, Gong-Hong Wei, Xin Li, Denglong Wu, Zhenfei Li

×

Figure 8

UBE3D deletion enhances tumor aggressiveness.

Options: View larger image (or click on image) Download as PowerPoint
UBE3D deletion enhances tumor aggressiveness.
(A) DHEA utilization in LN...
(A) DHEA utilization in LNCaP and VCaP cells upon UBE3D knockdown. [3H]-DHEA was used to treat LNCaP and VCaP after UBE3D knockdown. (B and C) Expression of AR target genes in LNCaP and VCaP after UBE3D knockdown. Charcoal-stripped serum (CSS) was used for starvation before DHEA was added. (D) Cell proliferation in LNCaP and C4-2 with or without UBE3D overexpression. Prostate cancer cells with doxycycline-induced (Dox-induced) UBE3D overexpression were starved in CSS for 48 hours before DHEA or Dox treatment. (E) Cell proliferation in LNCaP and C4-2 with or without UBE3D knockout. Different guide RNAs were used to generate UBE3D-knockout cells in LNCaP and VCaP. (F) Effect of UBE3D on DHEA-induced xenograft growth. C4-2 cells with Dox-induced UBE3D overexpression were used for xenograft assay in castrated mice. DHEA treatment was achieved through sustained-release DHEA pellets. Dox, 2 mg/mL in water. (G) Tumor weights from xenograft assay. Results are shown as mean ± SD. *P < 0.05, **P < 0.01 by 1-way ANOVA.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts