Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Truncated titin is structurally integrated into the human dilated cardiomyopathic sarcomere
Dalma Kellermayer, … , Béla Merkely, Miklós S.Z. Kellermayer
Dalma Kellermayer, … , Béla Merkely, Miklós S.Z. Kellermayer
Published November 14, 2023
Citation Information: J Clin Invest. 2024;134(2):e169753. https://doi.org/10.1172/JCI169753.
View: Text | PDF
Research Article Cardiology Muscle biology

Truncated titin is structurally integrated into the human dilated cardiomyopathic sarcomere

  • Text
  • PDF
Abstract

Heterozygous (HET) truncating variant mutations in the TTN gene (TTNtvs), encoding the giant titin protein, are the most common genetic cause of dilated cardiomyopathy (DCM). However, the molecular mechanisms by which TTNtv mutations induce DCM are controversial. Here, we studied 127 clinically identified DCM human cardiac samples with next-generation sequencing (NGS), high-resolution gel electrophoresis, Western blot analysis, and super-resolution microscopy in order to dissect the structural and functional consequences of TTNtv mutations. The occurrence of TTNtv was found to be 15% in the DCM cohort. Truncated titin proteins matching, by molecular weight, the gene sequence predictions were detected in the majority of the TTNtv+ samples. Full-length titin was reduced in TTNtv+ compared with TTNtv– samples. Proteomics analysis of washed myofibrils and stimulated emission depletion (STED) super-resolution microscopy of myocardial sarcomeres labeled with sequence-specific anti-titin antibodies revealed that truncated titin was structurally integrated into the sarcomere. Sarcomere length–dependent anti–titin epitope position, shape, and intensity analyses pointed at possible structural defects in the I/A junction and the M-band of TTNtv+ sarcomeres, which probably contribute, possibly via faulty mechanosensor function, to the development of manifest DCM.

Authors

Dalma Kellermayer, Hedvig Tordai, Balázs Kiss, György Török, Dániel M. Péter, Alex Ali Sayour, Miklós Pólos, István Hartyánszky, Bálint Szilveszter, Siegfried Labeit, Ambrus Gángó, Gábor Bedics, Csaba Bödör, Tamás Radovits, Béla Merkely, Miklós S.Z. Kellermayer

×

Figure 1

Titin domain structure and location of truncating variants.

Options: View larger image (or click on image) Download as PowerPoint
Titin domain structure and location of truncating variants.
Layout of th...
Layout of the human titin isoform IC (NCBI reference sequence NP_001254479) composed of 35,991 amino acids. NGS revealed 19 DCM samples with TTNtv, labeled according to the registry patient ID. The truncating variants were overrepresented in the A-band region of titin. Patient 34 had a truncating variant in the I/A junction (junct.), and patient 94 had the TTNtv in the M-band region. Red and starred numbers indicate samples used for myofibril protein composition and structural (STED microscopy) analyses, respectively. Black squares indicate the binding location of monoclonal antibodies used in the STED microscopy analyses. The T12 antibody binds to the I2–I3 titin domains (residues 2,174–2,437) (29, 30). The MIR, A170 and M8M10 antibodies bind to the I109–I112 (residues 15,968–16,348), A168–A170 (residues 33,496–33,784) and M8-M10 (residues 35,553–35,991) domains, respectively (see Supplementary Information and www.myomedix.com) (2, 31). term, terminal.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts