Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
LAIR-1 agonism as a therapy for acute myeloid leukemia
Rustin R. Lovewell, … , Dallas B. Flies, Tae Kon Kim
Rustin R. Lovewell, … , Dallas B. Flies, Tae Kon Kim
Published November 15, 2023
Citation Information: J Clin Invest. 2023;133(22):e169519. https://doi.org/10.1172/JCI169519.
View: Text | PDF
Research Article Oncology

LAIR-1 agonism as a therapy for acute myeloid leukemia

  • Text
  • PDF
Abstract

Effective eradication of leukemic stem cells (LSCs) remains the greatest challenge in treating acute myeloid leukemia (AML). The immune receptor LAIR-1 has been shown to regulate LSC survival; however, the therapeutic potential of this pathway remains unexplored. We developed a therapeutic LAIR-1 agonist antibody, NC525, that induced cell death of LSCs, but not healthy hematopoietic stem cells in vitro, and killed LSCs and AML blasts in both cell- and patient-derived xenograft models. We showed that LAIR-1 agonism drives a unique apoptotic signaling program in leukemic cells that was enhanced in the presence of collagen. NC525 also significantly improved the activity of azacitidine and venetoclax to establish LAIR-1 targeting as a therapeutic strategy for AML that may synergize with standard-of-care therapies.

Authors

Rustin R. Lovewell, Junshik Hong, Subhadip Kundu, Carly M. Fielder, Qianni Hu, Kwang Woon Kim, Haley E. Ramsey, Agnieszka E. Gorska, Londa S. Fuller, Linjie Tian, Priyanka Kothari, Ana Paucarmayta, Emily F. Mason, Ingrid Meza, Yanira Manzanarez, Jason Bosiacki, Karla Maloveste, Ngan Mitchell, Emilia A. Barbu, Aaron Morawski, Sebastien Maloveste, Zac Cusumano, Shashank J. Patel, Michael R. Savona, Solomon Langermann, Han Myint, Dallas B. Flies, Tae Kon Kim

×

Figure 6

LAIR-1 signaling restricts AML survival signaling pathways in vivo.

Options: View larger image (or click on image) Download as PowerPoint
LAIR-1 signaling restricts AML survival signaling pathways in vivo.
(A) ...
(A) Model schematic (left) and MV4-11-luciferase growth (right) in CDX mice used for digital spatial imaging and target protein quantification. n = 6 mice per group. (B) Representative images of CDX mouse bones stained with DAPI (blue) and anti–human CD45 (red) used to quantify the number of MV4-11 cells in the indicated region of interest (ROI) (highlighted). ROI area is equal between samples. (C) Protein reads of human CD45, BCL-XL, or uncleaved PARP from bone or spleen harvested from CDX mice at day 22 after engraftment. Read counts are normalized to histone H3 and ribosomal protein S6. n = 3–11 quantified tissue regions across 2 isotype-treated or 2 NC525-treated mice. Data are shown as the mean ± SEM. P values determined by Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts