Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Comprehensive functional characterization of SGCB coding variants predicts pathogenicity in limb-girdle muscular dystrophy type R4/2E
Chengcheng Li, Jackson Wilborn, Sara Pittman, Jil Daw, Jorge Alonso-Pérez, Jordi Díaz-Manera, Conrad C. Weihl, Gabe Haller
Chengcheng Li, Jackson Wilborn, Sara Pittman, Jil Daw, Jorge Alonso-Pérez, Jordi Díaz-Manera, Conrad C. Weihl, Gabe Haller
View: Text | PDF
Research Article Genetics Muscle biology

Comprehensive functional characterization of SGCB coding variants predicts pathogenicity in limb-girdle muscular dystrophy type R4/2E

  • Text
  • PDF
Abstract

Genetic testing is essential for patients with a suspected hereditary myopathy. More than 50% of patients clinically diagnosed with a myopathy carry a variant of unknown significance in a myopathy gene, often leaving them without a genetic diagnosis. Limb-girdle muscular dystrophy (LGMD) type R4/2E is caused by mutations in β-sarcoglycan (SGCB). Together, β-, α-, γ-, and δ-sarcoglycan form a 4-protein transmembrane complex (SGC) that localizes to the sarcolemma. Biallelic loss-of-function mutations in any subunit can lead to LGMD. To provide functional evidence for the pathogenicity of missense variants, we performed deep mutational scanning of SGCB and assessed SGC cell surface localization for all 6,340 possible amino acid changes. Variant functional scores were bimodally distributed and perfectly predicted pathogenicity of known variants. Variants with less severe functional scores more often appeared in patients with slower disease progression, implying a relationship between variant function and disease severity. Amino acid positions intolerant to variation mapped to points of predicted SGC interactions, validated in silico structural models, and enabled accurate prediction of pathogenic variants in other SGC genes. These results will be useful for clinical interpretation of SGCB variants and improving diagnosis of LGMD; we hope they enable wider use of potentially life-saving gene therapy.

Authors

Chengcheng Li, Jackson Wilborn, Sara Pittman, Jil Daw, Jorge Alonso-Pérez, Jordi Díaz-Manera, Conrad C. Weihl, Gabe Haller

×

Figure 4

Relationship between disease severity and variant function.

Options: View larger image (or click on image) Download as PowerPoint
Relationship between disease severity and variant function.
(A) FLOW cyt...
(A) FLOW cytometry dot plots showing the relationship between HA-immunofluorescence (HA-Alexa647) and YFP expression level (FITC, y axis) for ADG-HEK cells transduced with lentivirus to express either WT or mutant SGCB. (B) Quantification of the number of YFP-positive cells that also demonstrated positive HA cell surface staining. (C) Average age at onset (AAO) and age at loss of ambulation (ALA) for individuals homozygous for given variants in SGCB. (D) Cox’s proportional hazard curves for loss of ambulation among genetically diagnosed patients with LGMD with SGCB pathogenic variants with HA functional scores that sum less than –2 (severe) or more than –2 (milder).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts