In humans, autologous transplants derived from bone marrow (BM) usually engraft more slowly than transplants derived from mobilized peripheral blood. Allogeneic BM transplants show a further delay in engraftment and have an apparent requirement for donor T cells to facilitate engraftment. In mice, Thy-1.1(lo)Lin-/loSca-1+ hematopoietic stem cells (HSCs) are the principal population in BM which is responsible for engraftment in syngeneic hosts at radioprotective doses, and higher doses of HSCs can radioprotect an allogeneic host in the absence of donor T cells. Using the mouse as a preclinical model, we wished to test to what extent engraftment kinetics was a function of HSC content, and whether at high doses of c-Kit+Thy-1.1(lo)Lin-/loSca-1+ (KTLS) cells rapid allogeneic engraftment could also be achieved. Here we demonstrate that engraftment kinetics varied greatly over the range of KTLS doses tested (100-10,000 cells), with the most rapid engraftment being obtained with a dose of 5,000 or more syngeneic cells. Mobilized splenic KTLS cells and the rhodamine 123(lo) subset of KTLS cells were also able to engraft rapidly. Higher doses of allogeneic cells were needed to produce equivalent engraftment kinetics. This suggests that in mice even fully allogeneic barriers can be traversed with high doses of HSCs, and that in humans it may be possible to obtain rapid engraftment in an allogeneic context with clinically achievable doses of purified HSCs.
N Uchida, A Tsukamoto, D He, A M Friera, R Scollay, I L Weissman
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 226 | 27 |
51 | 17 | |
Citation downloads | 66 | 0 |
Totals | 343 | 44 |
Total Views | 387 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.