Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI1681

High doses of purified stem cells cause early hematopoietic recovery in syngeneic and allogeneic hosts.

N Uchida, A Tsukamoto, D He, A M Friera, R Scollay, and I L Weissman

SyStemix, Incorporated, Palo Alto, California 94304, USA. nuchida@stem.com

Find articles by Uchida, N. in: PubMed | Google Scholar

SyStemix, Incorporated, Palo Alto, California 94304, USA. nuchida@stem.com

Find articles by Tsukamoto, A. in: PubMed | Google Scholar

SyStemix, Incorporated, Palo Alto, California 94304, USA. nuchida@stem.com

Find articles by He, D. in: PubMed | Google Scholar

SyStemix, Incorporated, Palo Alto, California 94304, USA. nuchida@stem.com

Find articles by Friera, A. in: PubMed | Google Scholar

SyStemix, Incorporated, Palo Alto, California 94304, USA. nuchida@stem.com

Find articles by Scollay, R. in: PubMed | Google Scholar

SyStemix, Incorporated, Palo Alto, California 94304, USA. nuchida@stem.com

Find articles by Weissman, I. in: PubMed | Google Scholar

Published March 1, 1998 - More info

Published in Volume 101, Issue 5 on March 1, 1998
J Clin Invest. 1998;101(5):961–966. https://doi.org/10.1172/JCI1681.
© 1998 The American Society for Clinical Investigation
Published March 1, 1998 - Version history
View PDF
Abstract

In humans, autologous transplants derived from bone marrow (BM) usually engraft more slowly than transplants derived from mobilized peripheral blood. Allogeneic BM transplants show a further delay in engraftment and have an apparent requirement for donor T cells to facilitate engraftment. In mice, Thy-1.1(lo)Lin-/loSca-1+ hematopoietic stem cells (HSCs) are the principal population in BM which is responsible for engraftment in syngeneic hosts at radioprotective doses, and higher doses of HSCs can radioprotect an allogeneic host in the absence of donor T cells. Using the mouse as a preclinical model, we wished to test to what extent engraftment kinetics was a function of HSC content, and whether at high doses of c-Kit+Thy-1.1(lo)Lin-/loSca-1+ (KTLS) cells rapid allogeneic engraftment could also be achieved. Here we demonstrate that engraftment kinetics varied greatly over the range of KTLS doses tested (100-10,000 cells), with the most rapid engraftment being obtained with a dose of 5,000 or more syngeneic cells. Mobilized splenic KTLS cells and the rhodamine 123(lo) subset of KTLS cells were also able to engraft rapidly. Higher doses of allogeneic cells were needed to produce equivalent engraftment kinetics. This suggests that in mice even fully allogeneic barriers can be traversed with high doses of HSCs, and that in humans it may be possible to obtain rapid engraftment in an allogeneic context with clinically achievable doses of purified HSCs.

Version history
  • Version 1 (March 1, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts