Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A brain-tumor neural circuit controls breast cancer progression in mice
Si-Yi Xiong, … , Yi Zhang, Guang-Yan Wu
Si-Yi Xiong, … , Yi Zhang, Guang-Yan Wu
Published October 17, 2023
Citation Information: J Clin Invest. 2023;133(24):e167725. https://doi.org/10.1172/JCI167725.
View: Text | PDF
Research Article Neuroscience Oncology

A brain-tumor neural circuit controls breast cancer progression in mice

  • Text
  • PDF
Abstract

Tumor burden, considered a common chronic stressor, can cause widespread anxiety. Evidence suggests that cancer-induced anxiety can promote tumor progression, but the underlying neural mechanism remains unclear. Here, we used neuroscience and cancer tools to investigate how the brain contributes to tumor progression via nerve-tumor crosstalk in a mouse model of breast cancer. We show that tumor-bearing mice exhibited significant anxiety-like behaviors and that corticotropin-releasing hormone (CRH) neurons in the central medial amygdala (CeM) were activated. Moreover, we detected newly formed sympathetic nerves in tumors, which established a polysynaptic connection to the brain. Pharmacogenetic or optogenetic inhibition of CeMCRH neurons and the CeMCRH→lateral paragigantocellular nucleus (LPGi) circuit significantly alleviated anxiety-like behaviors and slowed tumor growth. Conversely, artificial activation of CeMCRH neurons and the CeMCRH→LPGi circuit increased anxiety and tumor growth. Importantly, we found alprazolam, an antianxiety drug, to be a promising agent for slowing tumor progression. Furthermore, we show that manipulation of the CeMCRH→LPGi circuit directly regulated the activity of the intratumoral sympathetic nerves and peripheral nerve–derived norepinephrine, which affected tumor progression by modulating antitumor immunity. Together, these findings reveal a brain-tumor neural circuit that contributes to breast cancer progression and provide therapeutic insights for breast cancer.

Authors

Si-Yi Xiong, Hui-Zhong Wen, Li-Meng Dai, Yun-Xiao Lou, Zhao-Qun Wang, Yi-Lun Yi, Xiao-Jing Yan, Ya-Ran Wu, Wei Sun, Peng-Hui Chen, Si-Zhe Yang, Xiao-Wei Qi, Yi Zhang, Guang-Yan Wu

×

Figure 3

Activation of CeMCRH neurons increases the activities of local sympathetic nerves distributed in mammary tumors.

Options: View larger image (or click on image) Download as PowerPoint
Activation of CeMCRH neurons increases the activities of local sympathet...
(A) Timeline for c-Fos and CRH immunofluorescence staining. (B) Representative bioluminescence images of mice 4 weeks after injection of vehicle or 4T1-luc breast cancer cells. Scale bar: 10 mm. (C and D) Representative images (C) and quantification (D) of c-Fos+ neurons colocalized with CeMCRH neurons from the vehicle and 4T1-luc treatment groups (n = 5 for each group). Scale bars: 50 μm. (E and F) Timeline and scheme for recording the activities of sympathetic nerves distributed in tumor stroma during optogenetic stimulation of CeMCRH neurons. (G and H) Typical image of virus expression in CeM (G) and tumor stroma (H). Scale bars: 200 μm (G) and 20 μm (H). (I and J) Comparison of the mean ΔF/F (0–5 s) (I) and peak amplitude of ΔF/F (J) between the GRABNE2h and EGFP groups (n = 5 for each group). (K) Average fluorescence change in the GRABNE2h and EGFP groups, with shaded areas indicating the SEM. (L and M) Heatmaps show the average fluorescence change in the GRABNE2h (L) and EGFP (M) groups. Data are presented as the mean ± SEM. ***P < 0.001, by 2-tailed, unpaired Student’s t test (D, I, and J).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts