Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Notch1 signaling impairs regulatory T cells during multisystem inflammatory syndrome in children
Magali Noval Rivas, Moshe Arditi
Magali Noval Rivas, Moshe Arditi
Published January 3, 2023
Citation Information: J Clin Invest. 2023;133(1):e166016. https://doi.org/10.1172/JCI166016.
View: Text | PDF
Commentary

Notch1 signaling impairs regulatory T cells during multisystem inflammatory syndrome in children

  • Text
  • PDF
Abstract

Multisystem inflammatory syndrome in children (MIS-C) is a rare pediatric inflammatory disorder characterized by immune cell hyperactivation, cytokine storm, and the production of autoantibodies. The mechanisms underlying such immune dysregulation still need to be unraveled. In this issue of the JCI, Benamar et al. demonstrated the critical role of the Notch receptor 1/CD22 (Notch1/CD22) axis in Tregs, which, when activated, impairs Treg functions and promotes inflammation. They showed that the Notch1/CD22 axis contributed to dysregulated immune responses in MIS-C. These findings may have implications for MIS-C and many other inflammatory diseases.

Authors

Magali Noval Rivas, Moshe Arditi

×

Full Text PDF | Download (437.08 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts