Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Inflammation fuels bone marrow exhaustion caused by Samd9l mutation
Moonjung Jung
Moonjung Jung
Published November 1, 2022
Citation Information: J Clin Invest. 2022;132(21):e164136. https://doi.org/10.1172/JCI164136.
View: Text | PDF
Commentary

Inflammation fuels bone marrow exhaustion caused by Samd9l mutation

  • Text
  • PDF
Abstract

Sterile α motif domain–containing 9 (SAMD9) and SAMD9-like (SAMD9L) syndromes are inherited bone marrow failure syndromes known for their frequent development of myelodysplastic syndrome with monosomy 7. In this issue of the JCI, Abdelhamed, Thomas, et al. report a mouse model with a hematopoietic cell–specific heterozygous Samd9l mutation knockin. This mouse model resembles human disease in many ways, including bone marrow failure and the nonrandom loss of the mutant allele. Samd9l-mutant hematopoietic stem progenitor cells showed reduced fitness at baseline, which was further exacerbated by inflammation. TGF-β hyperactivation was found to underlie reduced fitness, which was partially rescued by a TGF-β inhibitor. These findings illustrate the potential role of TGF-β inhibitors in the treatment of SAMD9/SAMD9L syndromes.

Authors

Moonjung Jung

×

Full Text PDF | Download (577.01 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts