Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
iPSC–derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function
Kevin T. Eade, Brendan Robert E. Ansell, Sarah Giles, Regis Fallon, Sarah Harkins-Perry, Takayuki Nagasaki, Simone Tzaridis, Martina Wallace, Elizabeth A. Mills, Samaneh Farashi, Alec Johnson, Lydia Sauer, Barbara Hart, M. Elena Diaz-Rubio, Melanie Bahlo, Christian Metallo, Rando Allikmets, Marin L. Gantner, Paul S. Bernstein, Martin Friedlander
Kevin T. Eade, Brendan Robert E. Ansell, Sarah Giles, Regis Fallon, Sarah Harkins-Perry, Takayuki Nagasaki, Simone Tzaridis, Martina Wallace, Elizabeth A. Mills, Samaneh Farashi, Alec Johnson, Lydia Sauer, Barbara Hart, M. Elena Diaz-Rubio, Melanie Bahlo, Christian Metallo, Rando Allikmets, Marin L. Gantner, Paul S. Bernstein, Martin Friedlander
View: Text | PDF
Research Article Ophthalmology

iPSC–derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function

  • Text
  • PDF
Abstract

Patient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.

Authors

Kevin T. Eade, Brendan Robert E. Ansell, Sarah Giles, Regis Fallon, Sarah Harkins-Perry, Takayuki Nagasaki, Simone Tzaridis, Martina Wallace, Elizabeth A. Mills, Samaneh Farashi, Alec Johnson, Lydia Sauer, Barbara Hart, M. Elena Diaz-Rubio, Melanie Bahlo, Christian Metallo, Rando Allikmets, Marin L. Gantner, Paul S. Bernstein, Martin Friedlander

×

Figure 2

Donor iPSC–derived RPE cells are functional RPE cells.

Options: View larger image (or click on image) Download as PowerPoint
Donor iPSC–derived RPE cells are functional RPE cells.
(A) Representativ...
(A) Representative bright-field image of iRPE cells showing hexagonal morphology and pigmentation. Original magnification is ×20.(B) Representative confocal image of iRPE cells showing ZO-1 (red) and DAPI (blue) staining. (C) Representative transmission electron microscopy image of a cross-section of iRPE showing apical microvilli (arrowhead), basement membrane (arrow), and pigment granules (asterisk). (A–C) Images are from iRPE from MacTel-affected donor 9. (D) Relative expression levels of the RPE-specific genes BEST1 and RPE65 in iPSCs (n = 3 clones), human fetal RPE cells (n = 3 replicates), and donor-derived iRPE cells (n = 38 clones). (E) Cartoon representation of iRPE cells cultured in a Transwell with separate apical and basal media chambers. (F) Total protein secretion of VEGF and PEDF from iRPE cells at different time points over a 24-hour period. Data are shown as maximal to minimal box plots, with the line as the median and “+” as the mean. n = 35 clones. (G) Polar secretion of PEDF from iRPE at different time points. n = 35 clones. (H) Total VEGF and PEDF levels at 16 weeks in MacTel and control iRPE. VEGF, P = 0.74 and PEDF P = 0.85, using mixed linear modeling. Control, n = 5 donors; MacTel, n = 8 donors. Each individual donor is represented by the average of at least 2 independent clones. All data are represented as the mean ± SEM. Scale bars: 25 μm (A and B) and 100 nm (C).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts