Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Heterozygous mutations in the C-terminal domain of COPA underlie a complex autoinflammatory syndrome
Selket Delafontaine, Alberto Iannuzzo, Tarin M. Bigley, Bram Mylemans, Ruchit Rana, Pieter Baatsen, Maria Cecilia Poli, Daisy Rymen, Katrien Jansen, Djalila Mekahli, Ingele Casteels, Catherine Cassiman, Philippe Demaerel, Alice Lepelley, Marie-Louise Frémond, Rik Schrijvers, Xavier Bossuyt, Katlijn Vints, Wim Huybrechts, Rachida Tacine, Karen Willekens, Anniek Corveleyn, Bram Boeckx, Marco Baggio, Lisa Ehlers, Sebastian Munck, Diether Lambrechts, Arnout Voet, Leen Moens, Giorgia Bucciol, Megan A. Cooper, Carla M. Davis, Jérôme Delon, Isabelle Meyts
Selket Delafontaine, Alberto Iannuzzo, Tarin M. Bigley, Bram Mylemans, Ruchit Rana, Pieter Baatsen, Maria Cecilia Poli, Daisy Rymen, Katrien Jansen, Djalila Mekahli, Ingele Casteels, Catherine Cassiman, Philippe Demaerel, Alice Lepelley, Marie-Louise Frémond, Rik Schrijvers, Xavier Bossuyt, Katlijn Vints, Wim Huybrechts, Rachida Tacine, Karen Willekens, Anniek Corveleyn, Bram Boeckx, Marco Baggio, Lisa Ehlers, Sebastian Munck, Diether Lambrechts, Arnout Voet, Leen Moens, Giorgia Bucciol, Megan A. Cooper, Carla M. Davis, Jérôme Delon, Isabelle Meyts
View: Text | PDF
Research Article Immunology

Heterozygous mutations in the C-terminal domain of COPA underlie a complex autoinflammatory syndrome

  • Text
  • PDF
Abstract

Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.R1058C, and p.R1142X) in 6 children from 3 unrelated families with a similar syndrome of autoinflammation and autoimmunity. We showed that these CTD COPA mutations disrupt the integrity and the function of coat protein complex I (COPI). In COPAR1142X and COPAR1058C fibroblasts, we demonstrated that COPI dysfunction causes both an anterograde ER-to-Golgi and a retrograde Golgi-to-ER trafficking defect. The disturbed intracellular trafficking resulted in a cGAS/STING-dependent upregulation of the type I IFN signaling in patients and patient-derived cell lines, albeit through a distinct molecular mechanism in comparison with mutations in the WD40 domain of COPA. We showed that CTD COPA mutations induce an activation of ER stress and NF-κB signaling in patient-derived primary cell lines. These results demonstrate the importance of the integrity of the CTD of COPA for COPI function and homeostatic intracellular trafficking, essential to ER homeostasis. CTD COPA mutations result in disease by increased ER stress, disturbed intracellular transport, and increased proinflammatory signaling.

Authors

Selket Delafontaine, Alberto Iannuzzo, Tarin M. Bigley, Bram Mylemans, Ruchit Rana, Pieter Baatsen, Maria Cecilia Poli, Daisy Rymen, Katrien Jansen, Djalila Mekahli, Ingele Casteels, Catherine Cassiman, Philippe Demaerel, Alice Lepelley, Marie-Louise Frémond, Rik Schrijvers, Xavier Bossuyt, Katlijn Vints, Wim Huybrechts, Rachida Tacine, Karen Willekens, Anniek Corveleyn, Bram Boeckx, Marco Baggio, Lisa Ehlers, Sebastian Munck, Diether Lambrechts, Arnout Voet, Leen Moens, Giorgia Bucciol, Megan A. Cooper, Carla M. Davis, Jérôme Delon, Isabelle Meyts

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 1,932 613
PDF 249 260
Figure 663 0
Supplemental data 152 70
Citation downloads 60 0
Totals 3,056 943
Total Views 3,999

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts