Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
RIP140 deficiency enhances cardiac fuel metabolism and protects mice from heart failure
Tsunehisa Yamamoto, … , E. Douglas Lewandowski, Daniel P. Kelly
Tsunehisa Yamamoto, … , E. Douglas Lewandowski, Daniel P. Kelly
Published March 16, 2023
Citation Information: J Clin Invest. 2023;133(9):e162309. https://doi.org/10.1172/JCI162309.
View: Text | PDF
Research Article Cardiology

RIP140 deficiency enhances cardiac fuel metabolism and protects mice from heart failure

  • Text
  • PDF
Abstract

During the development of heart failure (HF), the capacity for cardiomyocyte (CM) fatty acid oxidation (FAO) and ATP production is progressively diminished, contributing to pathologic cardiac hypertrophy and contractile dysfunction. Receptor-interacting protein 140 (RIP140, encoded by Nrip1) has been shown to function as a transcriptional corepressor of oxidative metabolism. We found that mice with striated muscle deficiency of RIP140 (strNrip1–/–) exhibited increased expression of a broad array of genes involved in mitochondrial energy metabolism and contractile function in heart and skeletal muscle. strNrip1–/– mice were resistant to the development of pressure overload–induced cardiac hypertrophy, and CM-specific RIP140-deficient (csNrip1–/–) mice were protected against the development of HF caused by pressure overload combined with myocardial infarction. Genomic enhancers activated by RIP140 deficiency in CMs were enriched in binding motifs for transcriptional regulators of mitochondrial function (estrogen-related receptor) and cardiac contractile proteins (myocyte enhancer factor 2). Consistent with a role in the control of cardiac fatty acid oxidation, loss of RIP140 in heart resulted in augmented triacylglyceride turnover and fatty acid utilization. We conclude that RIP140 functions as a suppressor of a transcriptional regulatory network that controls cardiac fuel metabolism and contractile function, representing a potential therapeutic target for the treatment of HF.

Authors

Tsunehisa Yamamoto, Santosh K. Maurya, Elizabeth Pruzinsky, Kirill Batmanov, Yang Xiao, Sarah M. Sulon, Tomoya Sakamoto, Yang Wang, Ling Lai, Kendra S. McDaid, Swapnil V. Shewale, Teresa C. Leone, Timothy R. Koves, Deborah M. Muoio, Pieterjan Dierickx, Mitchell A. Lazar, E. Douglas Lewandowski, Daniel P. Kelly

×

Figure 8

Cardiac-specific RIP140 deletion ameliorates impaired palmitate oxidation, TAG turnover, and LV remodeling induced by TAC surgery.

Options: View larger image (or click on image) Download as PowerPoint
Cardiac-specific RIP140 deletion ameliorates impaired palmitate oxidatio...
(A) Schematic depicting the experimental timeline. Ten- to 12-week-old male mice were subjected to TAC to induce HF. Eight weeks after TAC surgery, echocardiography and 13C-NMR were performed on csNrip1–/– and WT littermate control mice (n = 7–11 per group). (B) Fractional enrichment of acetyl-CoA (Fc) and TAG content (n = 7–11 per group). (C) TAG turnover rates of the intramyocardial TAG pool in control and csKO hearts after TAC surgery (n = 7–11 per group). (D) LVEDV, EF, and corrected LV mass (n = 9–13 per group). Values are the mean ± SEM. (E) PCr/ATP ratio in control and csKO hearts after TAC surgery (n = 7–11 per group). *P < 0.05, by 2-way ANOVA with Tukey’s multiple-comparison test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts