Accurately identifying patients who respond to immunotherapy remains clinically challenging. A noninvasive method that can longitudinally capture information about immune cell function and assist in the early assessment of tumor responses is highly desirable for precision immunotherapy. Here, we show that PET imaging using a granzyme B–targeted radiotracer named 68Ga-grazytracer, could noninvasively and effectively predict tumor responses to immune checkpoint inhibitors and adoptive T cell transfer therapy in multiple tumor models. 68Ga-grazytracer was designed and selected from several radiotracers based on non-aldehyde peptidomimetics, and exhibited excellent in vivo metabolic stability and favorable targeting efficiency to granzyme B secreted by effector CD8+ T cells during immune responses. 68Ga-grazytracer permitted more sensitive discrimination of responders and nonresponders than did 18F-fluorodeoxyglucose, distinguishing between tumor pseudoprogression and true progression upon immune checkpoint blockade therapy in mouse models with varying immunogenicity. In a preliminary clinical trial with 5 patients, no adverse events were observed after 68Ga-grazytracer injection, and clinical responses in cancer patients undergoing immunotherapy were favorably correlated with 68Ga-grazytracer PET results. These results highlight the potential of 68Ga-grazytracer PET to enhance the clinical effectiveness of granzyme B secretion–related immunotherapies by supporting early response assessment and precise patient stratification in a noninvasive and longitudinal manner.
Haoyi Zhou, Yanpu Wang, Hongchuang Xu, Xiuling Shen, Ting Zhang, Xin Zhou, Yuwen Zeng, Kui Li, Li Zhang, Hua Zhu, Xing Yang, Nan Li, Zhi Yang, Zhaofei Liu
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,477 | 621 |
328 | 196 | |
Figure | 776 | 5 |
Supplemental data | 215 | 63 |
Citation downloads | 99 | 0 |
Totals | 3,895 | 885 |
Total Views | 4,780 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.