Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

CST6 suppresses osteolytic bone disease in multiple myeloma by blocking osteoclast differentiation
Dongzheng Gai, Jin-Ran Chen, James P. Stewart, Intawat Nookaew, Hasem Habelhah, Cody Ashby, Fumou Sun, Yan Cheng, Can Li, Hongwei Xu, Bailu Peng, Tarun K. Garg, Carolina Schinke, Sharmilan Thanendrarajan, Maurizio Zangari, Fangping Chen, Bart Barlogie, Frits van Rhee, Guido Tricot, John D. Shaughnessy Jr., Fenghuang Zhan
Dongzheng Gai, Jin-Ran Chen, James P. Stewart, Intawat Nookaew, Hasem Habelhah, Cody Ashby, Fumou Sun, Yan Cheng, Can Li, Hongwei Xu, Bailu Peng, Tarun K. Garg, Carolina Schinke, Sharmilan Thanendrarajan, Maurizio Zangari, Fangping Chen, Bart Barlogie, Frits van Rhee, Guido Tricot, John D. Shaughnessy Jr., Fenghuang Zhan
View: Text | PDF
Research Article Bone biology Hematology

CST6 suppresses osteolytic bone disease in multiple myeloma by blocking osteoclast differentiation

  • Text
  • PDF
Abstract

Osteolytic bone disease is a hallmark of multiple myeloma (MM). A significant fraction (~20%) of MM patients do not develop osteolytic lesions (OLs). The molecular basis for the absence of bone disease in MM is not understood. We combined PET-CT and gene expression profiling (GEP) of purified BM CD138+ MM cells from 512 newly diagnosed MM patients to reveal that elevated expression of cystatin M/E (CST6) was significantly associated with the absence of OL in MM. An enzyme-linked immunosorbent assay revealed a strong correlation between CST6 levels in BM serum/plasma and CST6 mRNA expression. Both recombinant CST6 protein and BM serum from patients with high CST6 significantly inhibited the activity of the osteoclast-specific protease cathepsin K and blocked osteoclast differentiation and function. Recombinant CST6 inhibited bone destruction in ex vivo and in vivo myeloma models. Single-cell RNA-Seq showed that CST6 attenuates polarization of monocytes to osteoclast precursors. Furthermore, CST6 protein blocks osteoclast differentiation by suppressing cathepsin-mediated cleavage of NF-κB/p100 and TRAF3 following RANKL stimulation. Secretion by MM cells of CST6, an inhibitor of osteoclast differentiation and function, suppresses osteolytic bone disease in MM and probably other diseases associated with osteoclast-mediated bone loss.

Authors

Dongzheng Gai, Jin-Ran Chen, James P. Stewart, Intawat Nookaew, Hasem Habelhah, Cody Ashby, Fumou Sun, Yan Cheng, Can Li, Hongwei Xu, Bailu Peng, Tarun K. Garg, Carolina Schinke, Sharmilan Thanendrarajan, Maurizio Zangari, Fangping Chen, Bart Barlogie, Frits van Rhee, Guido Tricot, John D. Shaughnessy Jr., Fenghuang Zhan

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,296 382
PDF 179 99
Figure 574 2
Table 61 0
Supplemental data 595 49
Citation downloads 104 0
Totals 2,809 532
Total Views 3,341

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts