Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Retinoids increase human apo C-III expression at the transcriptional level via the retinoid X receptor. Contribution to the hypertriglyceridemic action of retinoids.
N Vu-Dac, … , J Dallongeville, B Staels
N Vu-Dac, … , J Dallongeville, B Staels
Published August 1, 1998
Citation Information: J Clin Invest. 1998;102(3):625-632. https://doi.org/10.1172/JCI1581.
View: Text | PDF
Research Article

Retinoids increase human apo C-III expression at the transcriptional level via the retinoid X receptor. Contribution to the hypertriglyceridemic action of retinoids.

  • Text
  • PDF
Abstract

Hypertriglyceridemia is a metabolic complication of retinoid therapy. In this study, we analyzed whether retinoids increase the expression of apo C-III, an antagonist of plasma triglyceride catabolism. In men, isotretinoin treatment (80 mg/d; 5 d) resulted in elevated plasma apo C-III, but not apo E concentrations. In human hepatoma HepG2 cells, retinoids increased apo C-III mRNA and protein production. Transient transfection experiments indicated that retinoids increase apo C-III expression at the transcriptional level. This increased apo C-III transcription is mediated by the retinoid X receptor (RXR), since LG1069 (4-[1-(5,6,7,8-tetrahydro-3,5,5,8, 8-pentamethyl-2-naphtalenyl)ethenyl]benzoic acid), a RXR-specific agonist, but not TTNPB ((E)- 4-[2-(5,6,7,8-tetrahydro-5,5,8, 8-tetramethyl-2-naphtalenyl)propenyl]benzoic acid), a retinoic acid receptor (RAR)-specific agonist, induced apo C-III mRNA in HepG2 cells and primary human hepatocytes. Mutagenesis experiments localized the retinoid responsiveness to a cis-element consisting of two imperfect AGGTCA sequences spaced by one oligonucleotide (DR-1), within the previously identified C3P footprint site. Cotransfection assays showed that RXR, but not RAR, activates apo C-III transcription through this element either as a homo- or as a heterodimer with the peroxisome proliferator-activated receptor. Thus, apo C-III is a target gene for retinoids acting via RXR. Increased apo C-III expression may contribute to the hypertriglyceridemia and atherogenic lipoprotein profile observed after retinoid therapy.

Authors

N Vu-Dac, P Gervois, I P Torra, J C Fruchart, V Kosykh, T Kooistra, H M Princen, J Dallongeville, B Staels

×

Full Text PDF | Download (347.34 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts