Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cyclin G1 induces maladaptive proximal tubule cell dedifferentiation and renal fibrosis through CDK5 activation
Kensei Taguchi, Bertha C. Elias, Sho Sugahara, Snehal Sant, Benjamin S. Freedman, Sushrut S. Waikar, Ambra Pozzi, Roy Zent, Raymond C. Harris, Samir M. Parikh, Craig R. Brooks
Kensei Taguchi, Bertha C. Elias, Sho Sugahara, Snehal Sant, Benjamin S. Freedman, Sushrut S. Waikar, Ambra Pozzi, Roy Zent, Raymond C. Harris, Samir M. Parikh, Craig R. Brooks
View: Text | PDF
Research Article Nephrology

Cyclin G1 induces maladaptive proximal tubule cell dedifferentiation and renal fibrosis through CDK5 activation

  • Text
  • PDF
Abstract

Acute kidney injury (AKI) occurs in approximately 13% of hospitalized patients and predisposes patients to chronic kidney disease (CKD) through the AKI-to-CKD transition. Studies from our laboratory and others have demonstrated that maladaptive repair of proximal tubule cells (PTCs), including induction of dedifferentiation, G2/M cell cycle arrest, senescence, and profibrotic cytokine secretion, is a key process promoting AKI-to-CKD transition, kidney fibrosis, and CKD progression. The molecular mechanisms governing maladaptive repair and the relative contribution of dedifferentiation, G2/M arrest, and senescence to CKD remain to be resolved. We identified cyclin G1 (CG1) as a factor upregulated in chronically injured and maladaptively repaired PTCs. We demonstrated that global deletion of CG1 inhibits G2/M arrest and fibrosis. Pharmacological induction of G2/M arrest in CG1-knockout mice, however, did not fully reverse the antifibrotic phenotype. Knockout of CG1 did not alter dedifferentiation and proliferation in the adaptive repair response following AKI. Instead, CG1 specifically promoted the prolonged dedifferentiation of kidney tubule epithelial cells observed in CKD. Mechanistically, CG1 promotes dedifferentiation through activation of cyclin-dependent kinase 5 (CDK5). Deletion of CDK5 in kidney tubule cells did not prevent G2/M arrest but did inhibit dedifferentiation and fibrosis. Thus, CG1 and CDK5 represent a unique pathway that regulates maladaptive, but not adaptive, dedifferentiation, suggesting they could be therapeutic targets for CKD.

Authors

Kensei Taguchi, Bertha C. Elias, Sho Sugahara, Snehal Sant, Benjamin S. Freedman, Sushrut S. Waikar, Ambra Pozzi, Roy Zent, Raymond C. Harris, Samir M. Parikh, Craig R. Brooks

×

Figure 4

CG1 modulates PTC dedifferentiation and proliferation in CKD.

Options: View larger image (or click on image) Download as PowerPoint
CG1 modulates PTC dedifferentiation and proliferation in CKD.
(A and B) ...
(A and B) Representative images of SOX9-labeled kidney sections from WT and CG1-KO mice in acute (day 7) and chronic (day 42) phases of AA. Scale bar: 20 μm (C) Corresponding quantification of the number of SOX9+ cells/kidney. Control (n = 5) and injured kidney (n = 3–6). (D) Western blot analysis of KIM-1, SOX9, and β-actin in acute phase of AA, including day 7 and day 14 after administration of AA and the corresponding quantification of SOX9/β-actin and KIM-1/β-actin. (E and F) Representative images of SOX9- and Ki-67–labeled kidney sections from WT and CG1-KO mice on day 3 and day 9 of UUO and corresponding quantification of the number of SOX9+ or Ki-67+ cells/kidney. Control (NK; n = 5) and injured kidney (n = 5–9). Scale bar: 20 μm. (G) Representative images of LTL staining in kidneys on days 0, 14, 28, and 42 following AA and corresponding quantification. Scale bar: 50 μm. (H) Western blotting analysis of YAP in whole-kidney lysates of WT and CG1-KO mice following AA. (I) Representative images of Na+/K+-ATPase– or VIM-stained kidney sections following UUO. Scale bars: 100 μm. HM, high magnification. (J) The corresponding quantification of Na+/K+-ATPase+ or VIM+ area/cortex (%). Control (n = 4–6) and injured kidney (n = 8–9). Scale bar: 100 μm. Data are presented as the mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 by 1-way ANOVA with Tukey’s post hoc test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts