Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy
Nigel A. Calcutt, … , Lee L. Rubin, David R. Tomlinson
Nigel A. Calcutt, … , Lee L. Rubin, David R. Tomlinson
Published February 15, 2003
Citation Information: J Clin Invest. 2003;111(4):507-514. https://doi.org/10.1172/JCI15792.
View: Text | PDF
Article Metabolism

Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy

  • Text
  • PDF
Abstract

Hedgehog proteins modulate development and patterning of the embryonic nervous system. As expression of desert hedgehog and the hedgehog receptor, patched-1, persist in the postnatal and adult peripheral nerves, the hedgehog pathway may have a role in maturation and maintenance of the peripheral nervous system in normal and disease states. We measured desert hedgehog expression in the peripheral nerve of maturing diabetic rats and found that diabetes caused a significant reduction in desert hedgehog mRNA. Treating diabetic rats with a sonic hedgehog–IgG fusion protein fully restored motor- and sensory-nerve conduction velocities and maintained the axonal caliber of large myelinated fibers. Diabetes-induced deficits in retrograde transport of nerve growth factor and sciatic-nerve levels of calcitonin gene–related product and neuropeptide Y were also ameliorated by treatment with the sonic hedgehog–IgG fusion protein, as was thermal hypoalgesia in the paw. These studies implicate disruption of normal hedgehog function in the etiology of diabetes-induced peripheral-nerve dysfunction and indicate that delivery of exogenous hedgehog proteins may have therapeutic potential for the treatment of diabetic neuropathy.

Authors

Nigel A. Calcutt, Karen L. Allendoerfer, Andrew P. Mizisin, Alicia Middlemas, Jason D. Freshwater, Monica Burgers, Rigel Ranciato, Jean-Dominique Delcroix, Frederick R. Taylor, Renee Shapiro, Kathy Strauch, Henryk Dudek, Thomas M. Engber, Alphonse Galdes, Lee L. Rubin, David R. Tomlinson

×

Full Text PDF | Download (584.36 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts