Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells
Wenxin Song, Anne P. Beigneux, Anne-Marie L. Winther, Kristian K. Kristensen, Anne L. Grønnemose, Ye Yang, Yiping Tu, Priscilla Munguia, Jazmin Morales, Hyesoo Jung, Pieter J. de Jong, Cris J. Jung, Kazuya Miyashita, Takao Kimura, Katsuyuki Nakajima, Masami Murakami, Gabriel Birrane, Haibo Jiang, Peter Tontonoz, Michael Ploug, Loren G. Fong, Stephen G. Young
Wenxin Song, Anne P. Beigneux, Anne-Marie L. Winther, Kristian K. Kristensen, Anne L. Grønnemose, Ye Yang, Yiping Tu, Priscilla Munguia, Jazmin Morales, Hyesoo Jung, Pieter J. de Jong, Cris J. Jung, Kazuya Miyashita, Takao Kimura, Katsuyuki Nakajima, Masami Murakami, Gabriel Birrane, Haibo Jiang, Peter Tontonoz, Michael Ploug, Loren G. Fong, Stephen G. Young
View: Text | PDF
Research Article Metabolism

Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells

  • Text
  • PDF
Abstract

GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1’s 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1’s AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL’s basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.

Authors

Wenxin Song, Anne P. Beigneux, Anne-Marie L. Winther, Kristian K. Kristensen, Anne L. Grønnemose, Ye Yang, Yiping Tu, Priscilla Munguia, Jazmin Morales, Hyesoo Jung, Pieter J. de Jong, Cris J. Jung, Kazuya Miyashita, Takao Kimura, Katsuyuki Nakajima, Masami Murakami, Gabriel Birrane, Haibo Jiang, Peter Tontonoz, Michael Ploug, Loren G. Fong, Stephen G. Young

×

Figure 2

Reduced amounts of LPL on the luminal surface of blood vessels in Gpihbp1S/S mice.

Options: View larger image (or click on image) Download as PowerPoint
Reduced amounts of LPL on the luminal surface of blood vessels in Gpihbp...
IRDye 680–3174 IgG (antibody against mouse LPL) and IRDye 800–2H8 (antibody against CD31) were injected intravenously into Gpihbp1+/+, Gpihbp1+/–, and Gpihbp1S/S mice. After 3 minutes, mice were perfused extensively with PBS and perfusion-fixed. (A) Representative images of the binding of antibodies 3174 and 2H8 to sections of brown adipose tissue (BAT) and heart. (B) The intensity of the IRDye 680 signal (reflecting LPL antibody binding) and the IRDye 800 signal (reflecting CD31 antibody binding) were quantified, and the LPL/CD31 ratios in BAT and heart sections were calculated. n = 4 Gpihbp1+/+, n = 3 Gpihbp1+/–, and n = 4 Gpihbp1S/S mice for BAT. n = 4 mice/genotype for heart. Ten sections/mouse were analyzed. NS, not significant. **P < 0.01; ***P < 0.001. A 1-way ANOVA test was used to compare means in panel B.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts