Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Human IAPP is a contributor to painful diabetic peripheral neuropathy
Mohammed M.H. Albariqi, … , Jo W.M. Höppener, Niels Eijkelkamp
Mohammed M.H. Albariqi, … , Jo W.M. Höppener, Niels Eijkelkamp
Published March 14, 2023
Citation Information: J Clin Invest. 2023;133(8):e156993. https://doi.org/10.1172/JCI156993.
View: Text | PDF
Research Article Immunology Neuroscience

Human IAPP is a contributor to painful diabetic peripheral neuropathy

  • Text
  • PDF
Abstract

Peripheral neuropathy is a frequent complication of type 2 diabetes mellitus (T2DM). We investigated whether human islet amyloid polypeptide (hIAPP), which forms pathogenic aggregates that damage pancreatic islet β cells in T2DM, is involved in T2DM-associated peripheral neuropathy. In vitro, hIAPP incubation with sensory neurons reduced neurite outgrowth and increased levels of mitochondrial reactive oxygen species. hIAPP-transgenic mice, which have elevated plasma hIAPP levels without hyperglycemia, developed peripheral neuropathy as evidenced by pain-associated behavior and reduced intraepidermal nerve fiber (IENF) density. Similarly, hIAPP Ob/Ob mice, which have hyperglycemia in combination with elevated plasma hIAPP levels, had signs of neuropathy, although more aggravated. In wild-type mice, intraplantar and intravenous hIAPP injections induced long-lasting allodynia and decreased IENF density. Non-aggregating murine IAPP, mutated hIAPP (pramlintide), or hIAPP with pharmacologically inhibited aggregation did not induce these effects. T2DM patients had reduced IENF density and more hIAPP oligomers in the skin compared with non-T2DM controls. Thus, we provide evidence that hIAPP aggregation is neurotoxic and mediates peripheral neuropathy in mice. The increased abundance of hIAPP aggregates in the skin of T2DM patients supports the notion that hIAPP is a potential contributor to T2DM neuropathy in humans.

Authors

Mohammed M.H. Albariqi, Sabine Versteeg, Elisabeth M. Brakkee, J. Henk Coert, Barend O.W. Elenbaas, Judith Prado, C. Erik Hack, Jo W.M. Höppener, Niels Eijkelkamp

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 1,042 252
PDF 135 82
Figure 323 1
Table 45 0
Supplemental data 61 5
Citation downloads 71 0
Totals 1,677 340
Total Views 2,017

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts