Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair
Xinping Zhang, … , Randy N. Rosier, Regis J. O’Keefe
Xinping Zhang, … , Randy N. Rosier, Regis J. O’Keefe
Published June 1, 2002
Citation Information: J Clin Invest. 2002;109(11):1405-1415. https://doi.org/10.1172/JCI15681.
View: Text | PDF | Corrigendum
Article Aging

Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair

  • Text
  • PDF
Abstract

Preclinical and clinical studies suggest a possible role for cyclooxygenases in bone repair and create concerns about the use of nonsteroidal antiinflammatory drugs in patients with skeletal injury. We utilized wild-type, COX-1–/–, and COX-2–/– mice to demonstrate that COX-2 plays an essential role in both endochondral and intramembranous bone formation during skeletal repair. The healing of stabilized tibia fractures was significantly delayed in COX-2–/– mice compared with COX-1–/– and wild-type controls. The histology was characterized by a persistence of undifferentiated mesenchyme and a marked reduction in osteoblastogenesis that resulted in a high incidence of fibrous nonunion in the COX-2–/– mice. Similarly, intramembranous bone formation on the calvaria was reduced 60% in COX-2–/– mice following in vivo injection of FGF-1 compared with either COX-1–/– or wild-type mice. To elucidate the mechanism involved in reduced bone formation, osteoblastogenesis was studied in bone marrow stromal cell cultures obtained from COX-2–/– and wild-type mice. Bone nodule formation was reduced 50% in COX-2–/– mice. The defect in osteogenesis was completely rescued by addition of prostaglandin E2 (PGE2) to the cultures. In the presence of bone morphogenetic protein (BMP-2), bone nodule formation was enhanced to a similar level above that observed with PGE2 alone in both control and COX-2–/– cultures, indicating that BMPs complement COX-2 deficiency and are downstream of prostaglandins. Furthermore, we found that the defect in COX-2–/– cultures correlated with significantly reduced levels of cbfa1 and osterix, two genes necessary for bone formation. Addition of PGE2 rescued this defect, while BMP-2 enhanced cbfa1 and osterix in both COX-2–/– and wild-type cultures. Finally, the effects of these agents were additive, indicating that COX-2 is involved in maximal induction of osteogenesis. These results provide a model whereby COX-2 regulates the induction of cbfa1 and osterix to mediate normal skeletal repair.

Authors

Xinping Zhang, Edward M. Schwarz, Donald A. Young, J. Edward Puzas, Randy N. Rosier, Regis J. O’Keefe

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Quantitative analysis of fracture callus in wild-type and COX-2–/– mice ...
Quantitative analysis of fracture callus in wild-type and COX-2–/– mice at 7, 14, and 21 days after fracture. Tissue sections from wild-type and COX-2–/– mice harvested on days 7 (n = 5), 14 (n = 7), and 21 (n = 9) after fracture were stained with Alcian blue/hematoxylin or for tartrate resistant acid phosphate (TRAP) as described in Methods. All slides were analyzed using Osteometrics software, (Osteometrics Inc., Atlanta, Georgia, USA) and percentages of mesenchymal tissue (a), bone (b), and cartilage (c) relative to the total fracture area are presented as the mean ± SEM. (d) Osteoclast numbers (TRAP-positive cells) per mm2 bone area were quantified as described in Methods and are presented as the mean ± SEM. Student’s t test was used to determine the statistical differences between each group. *P < 0.05, ***P < 0.001.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts