Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy
Shaima Salman, … , Michelle A. Rudek, Gregg L. Semenza
Shaima Salman, … , Michelle A. Rudek, Gregg L. Semenza
Published May 2, 2022
Citation Information: J Clin Invest. 2022;132(9):e156774. https://doi.org/10.1172/JCI156774.
View: Text | PDF
Research Article Oncology Therapeutics

HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy

  • Text
  • PDF
Abstract

Hepatocellular carcinoma (HCC) is a major cause of cancer mortality worldwide and available therapies, including immunotherapies, are ineffective for many patients. HCC is characterized by intratumoral hypoxia, and increased expression of hypoxia-inducible factor 1α (HIF-1α) in diagnostic biopsies is associated with patient mortality. Here we report the development of 32-134D, a low-molecular-weight compound that effectively inhibits gene expression mediated by HIF-1 and HIF-2 in HCC cells, and blocks human and mouse HCC tumor growth. In immunocompetent mice bearing Hepa1-6 HCC tumors, addition of 32-134D to anti-PD1 therapy increased the rate of tumor eradication from 25% to 67%. Treated mice showed no changes in appearance, behavior, body weight, hemoglobin, or hematocrit. Compound 32-134D altered the expression of a large battery of genes encoding proteins that mediate angiogenesis, glycolytic metabolism, and responses to innate and adaptive immunity. This altered gene expression led to significant changes in the tumor immune microenvironment, including a decreased percentage of tumor-associated macrophages and myeloid-derived suppressor cells, which mediate immune evasion, and an increased percentage of CD8+ T cells and natural killer cells, which mediate antitumor immunity. Taken together, these preclinical findings suggest that combining 32-134D with immune checkpoint blockade may represent a breakthrough therapy for HCC.

Authors

Shaima Salman, David J. Meyers, Elizabeth E. Wicks, Sophia N. Lee, Emmanuel Datan, Aline M. Thomas, Nicole M. Anders, Yousang Hwang, Yajing Lyu, Yongkang Yang, Walter Jackson III, Dominic Dordai, Michelle A. Rudek, Gregg L. Semenza

×

Figure 4

Effect of anti-PD1 and 32-134D on Hepa1-6 tumor growth in syngeneic mice.

Options: View larger image (or click on image) Download as PowerPoint
Effect of anti-PD1 and 32-134D on Hepa1-6 tumor growth in syngeneic mice...
C57L mice were injected with Hepa1-6 HCC cells subcutaneously and when tumors became palpable, they were randomized to receive intraperitoneal injection of vehicle (A) or 32-134D (40 mg/kg; B) daily; IgG2a isotype control (C) or anti-PD1 (D) antibody every 3 days; or both anti-PD1 and 32-134D (E). The percentage of mice in each treatment group with tumor eradication on day 34 is shown (F; blue, green, and red bars).

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts