Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases.
Y Cao, … , R W Ji, J Folkman
Y Cao, … , R W Ji, J Folkman
Published March 1, 1998
Citation Information: J Clin Invest. 1998;101(5):1055-1063. https://doi.org/10.1172/JCI1558.
View: Text | PDF | Correction
Research Article

Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases.

  • Text
  • PDF
Abstract

Tumor growth and metastasis are angiogenesis dependent. Previously, we reported that angiostatin, a potent angiogenesis inhibitor, produced by a primary Lewis lung carcinoma suppressed its growth of lung metastases (O'Reilly, M.S., L. Holmgren, Y. Shing, C. Chen, R.A. Rosenthal, M. Moses, W.S. Lane, Y. Cao, E.H. Sage, and J. Folkman. 1994. Cell. 79:315-328). Now we show that a shift of balance of tumor angiogenesis by gene transfer of a cDNA coding for mouse angiostatin into murine T241 fibrosarcoma cells suppresses primary and metastatic tumor growth in vivo. Implantation of stable clones expressing mouse angiostatin in C57Bl6/J mice inhibits primary tumor growth by an average of 77%. After removal of primary tumors, the pulmonary micrometastases in approximately 70% of mice remain in a microscopic dormant and avascular state for the duration of the experiments, e.g., 2-5 mo. The tumor cells in the dormant micrometastases exhibit a high rate of apoptosis balanced by a high proliferation rate. Our study, to our knowledge, for the first time shows the diminished growth of lung metastases after removal of the primary tumor, suggesting that metastases are self-inhibitory by halting angiogenesis. Our data may also provide a novel approach for cancer therapy by antiangiogenic gene therapy with a specific angiogenesis inhibitor.

Authors

Y Cao, M S O'Reilly, B Marshall, E Flynn, R W Ji, J Folkman

×

Full Text PDF

Download PDF (13.42 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts