Signaling circuits crucial to systemic physiology are widespread, yet uncovering their molecular underpinnings remains a barrier to understanding the etiology of many metabolic disorders. Here, we identified a copper-linked signaling circuit activated by disruption of mitochondrial function in the murine liver or heart that resulted in atrophy of the spleen and thymus and caused a peripheral white blood cell deficiency. We demonstrated that the leukopenia was caused by α-fetoprotein, which required copper and the cell surface receptor CCR5 to promote white blood cell death. We further showed that α-fetoprotein expression was upregulated in several cell types upon inhibition of oxidative phosphorylation. Collectively, our data argue that α-fetoprotein may be secreted by bioenergetically stressed tissue to suppress the immune system, an effect that may explain the recurrent or chronic infections that are observed in a subset of mitochondrial diseases or in other disorders with secondary mitochondrial dysfunction.
Kimberly A. Jett, Zakery N. Baker, Amzad Hossain, Aren Boulet, Paul A. Cobine, Sagnika Ghosh, Philip Ng, Orhan Yilmaz, Kris Barreto, John DeCoteau, Karen Mochoruk, George N. Ioannou, Christopher Savard, Sai Yuan, Osama H.M.H. Abdalla, Christopher Lowden, Byung-Eun Kim, Hai-Ying Mary Cheng, Brendan J. Battersby, Vishal M. Gohil, Scot C. Leary
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 920 | 174 |
137 | 43 | |
Figure | 338 | 1 |
Supplemental data | 184 | 6 |
Citation downloads | 77 | 0 |
Totals | 1,656 | 224 |
Total Views | 1,880 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.