Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The role of self-peptides in direct T cell allorecognition
Hossam A. Abdelsamed, Fadi G. Lakkis
Hossam A. Abdelsamed, Fadi G. Lakkis
Published November 1, 2021
Citation Information: J Clin Invest. 2021;131(21):e154096. https://doi.org/10.1172/JCI154096.
View: Text | PDF
Commentary

The role of self-peptides in direct T cell allorecognition

  • Text
  • PDF
Abstract

Direct allorecognition, the ability of host T cells to recognize intact allogeneic MHC molecules on transplanted tissues, is often assumed to be less dependent on the peptide bound to the MHC molecule than are other antigen recognition pathways. In this issue of the JCI, Son et al. provide unequivocal, in vivo evidence that direct allorecognition depends on the self-peptides bound to the non-self MHC molecule. The authors demonstrate that the induction of allospecific tolerance required the presentation of self-peptides by the non-self MHC molecule, and that only a handful of these peptides accounted for a sizeable proportion of the immunogenicity of the MHC antigen. These are important findings for transplant immunologists because they provide molecular insights into the biology of direct allorecognition, the prime driver of the alloimmune response to MHC-mismatched grafts, and much-needed tools, peptide–MHC multimers, to track and study polyclonal alloreactive T cells.

Authors

Hossam A. Abdelsamed, Fadi G. Lakkis

×

Full Text PDF | Download (780.99 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts