Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tumor-specific interendothelial adhesion mediated by FLRT2 facilitates cancer aggressiveness
Tomofumi Ando, Ikue Tai-Nagara, Yuki Sugiura, Dai Kusumoto, Koji Okabayashi, Yasuaki Kido, Kohji Sato, Hideyuki Saya, Sutip Navankasattusas, Dean Y. Li, Makoto Suematsu, Yuko Kitagawa, Elena Seiradake, Satoru Yamagishi, Yoshiaki Kubota
Tomofumi Ando, Ikue Tai-Nagara, Yuki Sugiura, Dai Kusumoto, Koji Okabayashi, Yasuaki Kido, Kohji Sato, Hideyuki Saya, Sutip Navankasattusas, Dean Y. Li, Makoto Suematsu, Yuko Kitagawa, Elena Seiradake, Satoru Yamagishi, Yoshiaki Kubota
View: Text | PDF
Research Article Angiogenesis Vascular biology

Tumor-specific interendothelial adhesion mediated by FLRT2 facilitates cancer aggressiveness

  • Text
  • PDF
Abstract

Blood vessel abnormalization alters cancer cell metabolism and promotes cancer dissemination and metastasis. However, the biological features of the abnormalized blood vessels that facilitate cancer progression and whether they can be targeted therapeutically have not been fully investigated. Here, we found that an axon guidance molecule, fibronectin leucine-rich transmembrane protein 2 (FLRT2), is expressed preferentially in abnormalized vessels of advanced colorectal cancers in humans and that its expression correlates negatively with long-term survival. Endothelial cell–specific deletion of Flrt2 in mice selectively pruned abnormalized vessels, resulting in a unique metabolic state termed “oxygen-glucose uncoupling,” which suppressed tumor metastasis. Moreover, Flrt2 deletion caused an increase in the number of mature vessels, resulting in a significant increase in the antitumor effects of immune checkpoint blockers. Mechanistically, we found that FLRT2 forms noncanonical interendothelial adhesions that safeguard against oxidative stress through homophilic binding. Together, our results demonstrated the existence of tumor-specific interendothelial adhesions that enable abnormalized vessels to facilitate cancer aggressiveness. Targeting this type of adhesion complex could be a safe and effective therapeutic option to suppress cancer progression.

Authors

Tomofumi Ando, Ikue Tai-Nagara, Yuki Sugiura, Dai Kusumoto, Koji Okabayashi, Yasuaki Kido, Kohji Sato, Hideyuki Saya, Sutip Navankasattusas, Dean Y. Li, Makoto Suematsu, Yuko Kitagawa, Elena Seiradake, Satoru Yamagishi, Yoshiaki Kubota

×

Figure 2

Endothelial Flrt2 sustains abnormalized tumor vessels in mice.

Options: View larger image (or click on image) Download as PowerPoint
Endothelial Flrt2 sustains abnormalized tumor vessels in mice.
(A) Proto...
(A) Protocol for 4OHT injections and tumor inoculations. (B) Representative IHC of B16 tumors on day 10 (n = 3) and representative PCR results (n = 3) showing expression of Flrt2 in isolated CD31+ tumor endothelial cells. (C) Tumors resected from mice 10 days after transplantation of B16 cells into the back skin (arrowheads). (D and E) Measurement of tumor weight and volume (n = 13 [control], 15 [Flrt2iΔEC]). (F–K) Immunohistochemical analysis of tumor sections (n = 7 [control], 9 [Flrt2iΔEC]). Intratumoral hemorrhage (open arrowheads) in tumors from control mice is greater than that in Flrt2iΔEC mice. (L–W) Immunohistochemical analysis of tumor sections (n = 7, 9, 7, and 5 [control], 3, 5, 4, and 7 [Flrt2iΔEC]). Tumors from Flrt2iΔEC mice show reduced endothelial proliferation (closed arrowheads) and increased pericyte coverage (open arrowheads). Scale bars: 1 cm (C [top]); 2 mm (C [bottom], F, G, P, and Q); 200 μm (R and S); 50 μm (B, H, I, and L–O). Data are presented as the mean ± SD. Comparisons between mean values of 2 groups were evaluated using a 2-tailed Student’s t test.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts