Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
A translational rheostat for RFLAT-1 regulates RANTES expression in T lymphocytes
Tania Nikolcheva, … , Carol Clayberger, Alan M. Krensky
Tania Nikolcheva, … , Carol Clayberger, Alan M. Krensky
Published July 1, 2002
Citation Information: J Clin Invest. 2002;110(1):119-126. https://doi.org/10.1172/JCI15336.
View: Text | PDF
Article Immunology

A translational rheostat for RFLAT-1 regulates RANTES expression in T lymphocytes

  • Text
  • PDF
Abstract

Research Article

Authors

Tania Nikolcheva, Stephane Pyronnet, Szu-yi Chou, Nahum Sonenberg, An Song, Carol Clayberger, Alan M. Krensky

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
RFLAT-1 5′-UTR inhibits translation in vitro and in vivo. (a) Absorbance...
RFLAT-1 5′-UTR inhibits translation in vitro and in vivo. (a) Absorbance profile (254 nm) of sucrose gradients from lysates of resting (D0) or PHA-activated (D1 and D5) PBLs. (b) Nine fractions were collected from each gradient, and equal volumes of each fraction were separated on an agarose gel and analyzed by Northern hybridization with an RFLAT-1 probe. 18S and 28S rRNA in each fraction were visualized by ethidium bromide staining. (c) RFLAT-1 expression constructs. (full-length [RF] or lacking the 5′-UTR [ΔU]) were subjected to in vitro transcription-translation in the presence of 35S methionine. The products were detected by autoradiography. (d–g) pcDNA3.1 Luc (Luc) or pcDNA 3.1 5′-UTR Luc (5′-UTR Luc) were subjected to in vitro transcription-translation (d) or transiently transfected into Jurkat T cells (e and g) or HEK293 cells (f) and assayed for luciferase activity. The data are presented as relative luciferase activity where the activity of the 5′-UTR Luc construct is arbitrarily set to 1. *P < 0.05 (d, e, and f). Decreasing amounts of lysates from transfected Jurkat cells were subjected to an RPA (g) using luciferase (upper panel) and actin riboprobes (bottom panel). Lanes 2 and 5, 30 μl; 3 and 6, 15 μl; 4 and 7, 7.5 μl lysate.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts