Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment
Angela M. Araujo, … , María M. Caffarel, Charles H. Lawrie
Angela M. Araujo, … , María M. Caffarel, Charles H. Lawrie
Published February 22, 2022
Citation Information: J Clin Invest. 2022;132(7):e148667. https://doi.org/10.1172/JCI148667.
View: Text | PDF | Corrigendum
Research Article Inflammation Oncology

Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment

  • Text
  • PDF
Abstract

The tumor microenvironment (TME) is reprogrammed by cancer cells and participates in all stages of tumor progression. The contribution of stromal cells to the reprogramming of the TME is not well understood. Here, we provide evidence of the role of the cytokine oncostatin M (OSM) as central node for multicellular interactions between immune and nonimmune stromal cells and the epithelial cancer cell compartment. OSM receptor (OSMR) deletion in a multistage breast cancer model halted tumor progression. We ascribed causality to the stromal function of the OSM axis by demonstrating reduced tumor burden of syngeneic tumors implanted in mice lacking OSMR. Single-cell and bioinformatic analysis of murine and human breast tumors revealed that OSM expression was restricted to myeloid cells, whereas OSMR was detected predominantly in fibroblasts and, to a lower extent, cancer cells. Myeloid-derived OSM reprogrammed fibroblasts to a more contractile and tumorigenic phenotype and elicited the secretion of VEGF and proinflammatory chemokines CXCL1 and CXCL16, leading to increased myeloid cell recruitment. Collectively, our data support the notion that the stromal OSM/OSMR axis reprograms the immune and nonimmune microenvironment and plays a key role in breast cancer progression.

Authors

Angela M. Araujo, Andrea Abaurrea, Peio Azcoaga, Joanna I. López-Velazco, Sara Manzano, Javier Rodriguez, Ricardo Rezola, Leire Egia-Mendikute, Fátima Valdés-Mora, Juana M. Flores, Liam Jenkins, Laura Pulido, Iñaki Osorio-Querejeta, Patricia Fernández-Nogueira, Nicola Ferrari, Cristina Viera, Natalia Martín-Martín, Alexandar Tzankov, Serenella Eppenberger-Castori, Isabel Alvarez-Lopez, Ander Urruticoechea, Paloma Bragado, Nicholas Coleman, Asís Palazón, Arkaitz Carracedo, David Gallego-Ortega, Fernando Calvo, Clare M. Isacke, María M. Caffarel, Charles H. Lawrie

×

Figure 7

OSM/OSMR signaling in cancer-associated fibroblasts (CAFs) induces cytokine secretion.

Options: View larger image (or click on image) Download as PowerPoint
OSM/OSMR signaling in cancer-associated fibroblasts (CAFs) induces cytok...
(A) Heatmap showing normalized mRNA expression of genes induced by OSM in CAF-173 and included in the indicated Gene Ontology (GO) pathway. (B) Gene set enrichment analysis (GSEA) showing enrichment of inflammatory hallmark signature in microarray expression data of CAF-173 spheres treated with 30 ng/mL OSM for 4 days. NES, normalized enrichment score. (C and D) Chemokine array analysis (C) and VEGF levels (D) in conditioned media from CAF-173 treated with PBS or 30 ng/mL OSM for 72 hours. *P < 0.05, **P < 0.01, ***P < 0.001. P values were determined using paired, 2-tailed Student’s t tests; n = 4 independent experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts