Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Targeting memory T cell metabolism to improve immunity
Mauro Corrado, Erika L. Pearce
Mauro Corrado, Erika L. Pearce
Published January 4, 2022
Citation Information: J Clin Invest. 2022;132(1):e148546. https://doi.org/10.1172/JCI148546.
View: Text | PDF
Review Series

Targeting memory T cell metabolism to improve immunity

  • Text
  • PDF
Abstract

Vaccination affords protection from disease by activating pathogen-specific immune cells and facilitating the development of persistent immunologic memory toward the vaccine-specific pathogen. Current vaccine regimens are often based on the efficiency of the acute immune response, and not necessarily on the generation of memory cells, in part because the mechanisms underlying the development of efficient immune memory remain incompletely understood. This Review describes recent advances in defining memory T cell metabolism and how metabolism of these cells might be altered in patients affected by mitochondrial diseases or metabolic syndrome, who show higher susceptibility to recurrent infections and higher rates of vaccine failure. It discusses how this new understanding could add to the way we think about immunologic memory, vaccine development, and cancer immunotherapy.

Authors

Mauro Corrado, Erika L. Pearce

×

Figure 3

Metabolic interventions in cancer immunotherapy.

Options: View larger image (or click on image) Download as PowerPoint
Metabolic interventions in cancer immunotherapy.
Three main scenarios fo...
Three main scenarios for metabolic interventions in the context of cancer immunotherapy can be imagined: (A) In vitro preconditioning to prime T cell metabolism before autologous in vivo transfer. One caveat to consider in this approach is the loss of the induced preconditioning upon T cell transfer in vivo. (B) Systemic administration of drugs that alter tumor and T cell metabolism. A limitation of this strategy is the potential for the development of systemic side effects. (C) Targeted delivery of metabolic modulators directly in the TME or administration of precursor drugs selectively activated in the TME could potentially overcome the issues described for the first two approaches.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts