Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
FOXA1 overexpression suppresses interferon signaling and immune response in cancer
Yundong He, … , Shancheng Ren, Haojie Huang
Yundong He, … , Shancheng Ren, Haojie Huang
Published June 8, 2021
Citation Information: J Clin Invest. 2021;131(14):e147025. https://doi.org/10.1172/JCI147025.
View: Text | PDF
Research Article Cell biology Therapeutics

FOXA1 overexpression suppresses interferon signaling and immune response in cancer

  • Text
  • PDF
Abstract

Androgen receptor–positive prostate cancer (PCa) and estrogen receptor–positive luminal breast cancer (BCa) are generally less responsive to immunotherapy compared with certain tumor types such as melanoma. However, the underlying mechanisms are not fully elucidated. In this study, we found that FOXA1 overexpression inversely correlated with interferon (IFN) signature and antigen presentation gene expression in PCa and BCa patients. FOXA1 bound the STAT2 DNA-binding domain and suppressed STAT2 DNA-binding activity, IFN signaling gene expression, and cancer immune response independently of the transactivation activity of FOXA1 and its mutations detected in PCa and BCa. Increased FOXA1 expression promoted cancer immuno- and chemotherapy resistance in mice and PCa and BCa patients. These findings were also validated in bladder cancer expressing high levels of FOXA1. FOXA1 overexpression could be a prognostic factor to predict therapy resistance and a viable target to sensitize luminal PCa, BCa, and bladder cancer to immuno- and chemotherapy.

Authors

Yundong He, Liguo Wang, Ting Wei, Yu-Tian Xiao, Haoyue Sheng, Hengchuan Su, Daniel P. Hollern, Xiaoling Zhang, Jian Ma, Simeng Wen, Hongyan Xie, Yuqian Yan, Yunqian Pan, Xiaonan Hou, Xiaojia Tang, Vera J. Suman, Jodi M. Carter, Richard Weinshilboum, Liewei Wang, Krishna R. Kalari, Saravut J. Weroha, Alan H. Bryce, Judy C. Boughey, Haidong Dong, Charles M. Perou, Dingwei Ye, Matthew P. Goetz, Shancheng Ren, Haojie Huang

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts