Melanoma dedifferentiation has been reported to be a state of cellular resistance to targeted therapies and immunotherapies as cancer cells revert to a more primitive cellular phenotype. Here, we show that, counterintuitively, the biopsies of patient tumors that responded to anti–programmed cell death 1 (anti–PD-1) therapy had decreased expression of melanocytic markers and increased neural crest markers, suggesting treatment-induced dedifferentiation. When modeling the effects in vitro, we documented that melanoma cell lines that were originally differentiated underwent a process of neural crest dedifferentiation when continuously exposed to IFN-γ, through global chromatin landscape changes that led to enrichment in specific hyperaccessible chromatin regions. The IFN-γ–induced dedifferentiation signature corresponded with improved outcomes in patients with melanoma, challenging the notion that neural crest dedifferentiation is entirely an adverse phenotype.
Yeon Joo Kim, Katherine M. Sheu, Jennifer Tsoi, Gabriel Abril-Rodriguez, Egmidio Medina, Catherine S. Grasso, Davis Y. Torrejon, Ameya S. Champhekar, Kevin Litchfield, Charles Swanton, Daniel E. Speiser, Philip O. Scumpia, Alexander Hoffmann, Thomas G. Graeber, Cristina Puig-Saus, Antoni Ribas
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,364 | 410 |
153 | 70 | |
Figure | 621 | 5 |
Supplemental data | 268 | 38 |
Citation downloads | 84 | 0 |
Totals | 2,490 | 523 |
Total Views | 3,013 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.