Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Systemic inflammation in glucocerebrosidase-deficient mice with minimal glucosylceramide storage
Hiroki Mizukami, … , Konrad Sandhoff, Richard L. Proia
Hiroki Mizukami, … , Konrad Sandhoff, Richard L. Proia
Published May 1, 2002
Citation Information: J Clin Invest. 2002;109(9):1215-1221. https://doi.org/10.1172/JCI14530.
View: Text | PDF
Article Genetics

Systemic inflammation in glucocerebrosidase-deficient mice with minimal glucosylceramide storage

  • Text
  • PDF
Abstract

Gaucher disease, the most common lysosomal storage disease, is caused by a deficiency of glucocerebrosidase resulting in the impairment of glucosylceramide degradation. The hallmark of the disease is the presence of the Gaucher cell, a macrophage containing much of the stored glucosylceramide found in tissues, which is believed to cause many of the clinical manifestations of the disease. We have developed adult mice carrying the Gaucher disease L444P point mutation in the glucocerebrosidase (Gba) gene and exhibiting a partial enzyme deficiency. The mutant mice demonstrate multisystem inflammation, including evidence of B cell hyperproliferation, an aspect of the disease found in some patients. However, the mutant mice do not accumulate large amounts of glucosylceramide or exhibit classic Gaucher cells in tissues.

Authors

Hiroki Mizukami, Yide Mi, Ryuichi Wada, Mari Kono, Tadashi Yamashita, Yujing Liu, Norbert Werth, Roger Sandhoff, Konrad Sandhoff, Richard L. Proia

×

Full Text PDF | Download (3.67 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts