High expression of LIN28B is associated with aggressive malignancy and poor survival. Here, probing MYCN-amplified neuroblastoma as a model system, we showed that LIN28B expression was associated with enhanced cell migration in vitro and invasive and metastatic behavior in murine xenografts. Sequence analysis of the polyribosome fraction of LIN28B-expressing neuroblastoma cells revealed let-7–independent enrichment of transcripts encoding components of the translational and ribosomal apparatus and depletion of transcripts of neuronal developmental programs. We further observed that LIN28B utilizes both its cold shock and zinc finger RNA binding domains to preferentially interact with MYCN-induced transcripts of the ribosomal complex, enhancing their translation. These data demonstrated that LIN28B couples the MYCN-driven transcriptional program to enhanced ribosomal translation, thereby implicating LIN28B as a posttranscriptional driver of the metastatic phenotype.
Pavlos Missios, Edroaldo Lummertz da Rocha, Daniel S. Pearson, Julia Philipp, Maria M. Aleman, Mehdi Pirouz, Dorian Farache, Joseph W. Franses, Caroline Kubaczka, Kaloyan M. Tsanov, Deepak K. Jha, Brian Pepe-Mooney, John T. Powers, Richard I. Gregory, Amy S.Y. Lee, Daniel Dominguez, David T. Ting, George Q. Daley
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,695 | 166 |
98 | 41 | |
Figure | 394 | 1 |
Supplemental data | 150 | 12 |
Citation downloads | 89 | 0 |
Totals | 2,426 | 220 |
Total Views | 2,646 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.