Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element
Thierry Claudel, … , Folkert Kuipers, Bart Staels
Thierry Claudel, … , Folkert Kuipers, Bart Staels
Published April 1, 2002
Citation Information: J Clin Invest. 2002;109(7):961-971. https://doi.org/10.1172/JCI14505.
View: Text | PDF
Article Endocrinology

Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element

  • Text
  • PDF
Abstract

Serum levels of HDL are inversely correlated with the risk of coronary heart disease. The anti-atherogenic effect of HDL is partially mediated by its major protein constituent apoA-I. In this study, we identify bile acids that are activators of the nuclear receptor farnesoid X receptor (FXR) as negative regulators of human apoA-I expression. Intrahepatocellular accumulation of bile acids, as seen in patients with progressive familial intrahepatic cholestasis and biliary atresia, was associated with diminished apoA-I serum levels. In human apoA-I transgenic mice, treatment with the FXR agonist taurocholic acid strongly decreased serum concentrations and liver mRNA levels of human apoA-I, which was associated with reduced serum HDL levels. Incubation of human primary hepatocytes and hepatoblastoma HepG2 cells with bile acids resulted in a dose-dependent downregulation of apoA-I expression. Promoter mutation analysis and gel-shift experiments in HepG2 cells demonstrated that bile acid–activated FXR decreases human apoA-I promoter activity by a negative FXR response element mapped to the C site. FXR bound this site and repressed transcription in a manner independent of retinoid X receptor. The nonsteroidal synthetic FXR agonist GW4064 likewise decreased apoA-I mRNA levels and promoter activity in HepG2 cells.

Authors

Thierry Claudel, Ekkehard Sturm, Hélène Duez, Inés Pineda Torra, Audrey Sirvent, Vladimir Kosykh, Jean-Charles Fruchart, Jean Dallongeville, Dean W. Hum, Folkert Kuipers, Bart Staels

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Low serum apoA-I in patients with progressive familial intrahepatic chol...
Low serum apoA-I in patients with progressive familial intrahepatic cholestasis. Serum apoA-I was determined in patients with low GGT-type PFIC (n = 15) in patients with BA (n = 15) or in normal control individuals (CON; n = 110). Serum apoA-I concentrations were normalized to CHE activities; data are expressed as means ± SEM. Serum total bile acid concentrations were also determined in the different groups as a marker of cholestasis. Bile acid concentration is expressed in micromoles per liter. Statistical analysis was performed by ANOVA (P < 0.001) followed by Dunnett’s T3 test. *P < 0.001 versus control.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts