Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
TREM-1 orchestrates angiotensin II–induced monocyte trafficking and promotes experimental abdominal aortic aneurysm
Marie Vandestienne, Yujiao Zhang, Icia Santos-Zas, Rida Al-Rifai, Jeremie Joffre, Andreas Giraud, Ludivine Laurans, Bruno Esposito, Florence Pinet, Patrick Bruneval, Juliette Raffort, Fabien Lareyre, Jose Vilar, Amir Boufenzer, Lea Guyonnet, Coralie Guerin, Eric Clauser, Jean-Sébastien Silvestre, Sylvie Lang, Laurie Soulat-Dufour, Alain Tedgui, Ziad Mallat, Soraya Taleb, Alexandre Boissonnas, Marc Derive, Giulia Chinetti, Hafid Ait-Oufella
Marie Vandestienne, Yujiao Zhang, Icia Santos-Zas, Rida Al-Rifai, Jeremie Joffre, Andreas Giraud, Ludivine Laurans, Bruno Esposito, Florence Pinet, Patrick Bruneval, Juliette Raffort, Fabien Lareyre, Jose Vilar, Amir Boufenzer, Lea Guyonnet, Coralie Guerin, Eric Clauser, Jean-Sébastien Silvestre, Sylvie Lang, Laurie Soulat-Dufour, Alain Tedgui, Ziad Mallat, Soraya Taleb, Alexandre Boissonnas, Marc Derive, Giulia Chinetti, Hafid Ait-Oufella
View: Text | PDF
Research Article Inflammation Vascular biology

TREM-1 orchestrates angiotensin II–induced monocyte trafficking and promotes experimental abdominal aortic aneurysm

  • Text
  • PDF
Abstract

The triggering receptor expressed on myeloid cells 1 (TREM-1) drives inflammatory responses in several cardiovascular diseases but its role in abdominal aortic aneurysm (AAA) remains unknown. Our objective was to explore the role of TREM-1 in a mouse model of angiotensin II–induced (AngII–induced) AAA. TREM-1 expression was detected in mouse aortic aneurysm and colocalized with macrophages. Trem1 gene deletion (Apoe–/–Trem1–/–), as well as TREM-1 pharmacological blockade with LR-12 peptide, limited both AAA development and severity. Trem1 gene deletion attenuated the inflammatory response in the aorta, with a reduction of Il1b, Tnfa, Mmp2, and Mmp9 mRNA expression, and led to a decreased macrophage content due to a reduction of Ly6Chi classical monocyte trafficking. Conversely, antibody-mediated TREM-1 stimulation exacerbated Ly6Chi monocyte aorta infiltration after AngII infusion through CD62L upregulation and promoted proinflammatory signature in the aorta, resulting in worsening AAA severity. AngII infusion stimulated TREM-1 expression and activation on Ly6Chi monocytes through AngII receptor type I (AT1R). In human AAA, TREM-1 was detected and TREM1 mRNA expression correlated with SELL mRNA expression. Finally, circulating levels of sTREM-1 were increased in patients with AAA when compared with patients without AAA. In conclusion, TREM-1 is involved in AAA pathophysiology and may represent a promising therapeutic target in humans.

Authors

Marie Vandestienne, Yujiao Zhang, Icia Santos-Zas, Rida Al-Rifai, Jeremie Joffre, Andreas Giraud, Ludivine Laurans, Bruno Esposito, Florence Pinet, Patrick Bruneval, Juliette Raffort, Fabien Lareyre, Jose Vilar, Amir Boufenzer, Lea Guyonnet, Coralie Guerin, Eric Clauser, Jean-Sébastien Silvestre, Sylvie Lang, Laurie Soulat-Dufour, Alain Tedgui, Ziad Mallat, Soraya Taleb, Alexandre Boissonnas, Marc Derive, Giulia Chinetti, Hafid Ait-Oufella

×

Figure 6

TREM-1 expression in human AAA.

Options: View larger image (or click on image) Download as PowerPoint
TREM-1 expression in human AAA.
(A) TREM-1 mRNA expression was quantifie...
(A) TREM-1 mRNA expression was quantified in normal aorta (from organ donors) and in AAA (neck and body) by RT-qPCR. TREM-1 mRNA expression was significantly higher in AAA tissues than in normal aorta tissue. (B) Immunofluorescence staining confirmed that TREM-1 is not expressed in normal aorta (C–D) but is strongly expressed in AAA tissues and localizes with CD68+ macrophages. Scale bars: 100 μm. (E) Soluble TREM-1 levels were quantified by ELISA in the plasma of healthy volunteers or in the group of patients with AAA or AF. (F) Correlation between TREM1 and SELL mRNA in aorta (pooled normal and AAA). Results are displayed as the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, by Kruskal-Wallis test (A and E) and Pearson correlation test (F).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts